针对高频地波雷达(High frequency surface wave radar,HFSWR)在探测中产生的回波数据,传统的人工识别和分类方法存在工作量大、效率低和主观性强等问题,本研究在分析一阶海杂波、电离层杂波和射频干扰的回波数据特性的基础上,创新性地...针对高频地波雷达(High frequency surface wave radar,HFSWR)在探测中产生的回波数据,传统的人工识别和分类方法存在工作量大、效率低和主观性强等问题,本研究在分析一阶海杂波、电离层杂波和射频干扰的回波数据特性的基础上,创新性地提出了基于YOLOv5识别模型的HFSWR杂波和干扰识别分类方法。该方法旨在帮助研究人员在海量实验数据中快速筛选出符合其科学研究需求的数据集,从而提高研究效率和数据准确性。在具体实施过程中,通过采用批量实测距离-多普勒(Range-Doppler,RD)谱数据对所提出模型进行训练和分析,使该方法能够在频域范围内对杂波和干扰进行有效识别。本研究以该识别分类算法为核心,进一步基于Python语言设计了一款地波雷达智能杂波和干扰识别分类软件。经过严格的批量实测数据测试验证,该软件能够满足设计需求,具有良好的可靠性,极大地提高了研究人员筛选有效实测数据的工作效率,为科学研究工作提供了有力的技术支撑。展开更多
文摘针对高频地波雷达(High frequency surface wave radar,HFSWR)在探测中产生的回波数据,传统的人工识别和分类方法存在工作量大、效率低和主观性强等问题,本研究在分析一阶海杂波、电离层杂波和射频干扰的回波数据特性的基础上,创新性地提出了基于YOLOv5识别模型的HFSWR杂波和干扰识别分类方法。该方法旨在帮助研究人员在海量实验数据中快速筛选出符合其科学研究需求的数据集,从而提高研究效率和数据准确性。在具体实施过程中,通过采用批量实测距离-多普勒(Range-Doppler,RD)谱数据对所提出模型进行训练和分析,使该方法能够在频域范围内对杂波和干扰进行有效识别。本研究以该识别分类算法为核心,进一步基于Python语言设计了一款地波雷达智能杂波和干扰识别分类软件。经过严格的批量实测数据测试验证,该软件能够满足设计需求,具有良好的可靠性,极大地提高了研究人员筛选有效实测数据的工作效率,为科学研究工作提供了有力的技术支撑。
文摘采用自主水下航行器(Autonomous Underwater Vehicle,AUV)磁测平台可开展海洋地磁场测量、水下磁性目标探测和识别等工作,AUV磁测平台具有广阔的应用前景,但目前AUV载体磁干扰补偿技术研究尚不成熟,制约着水下航行器测磁精度。基于磁测平台抗磁干扰基本原理,提出一种基于线性种群规模缩减和成功历史的参数自适应差分进化(Success History-based Adaptive Differential Evolution with Linear Population Size Reduction,L-SHADE)算法的AUV载体磁干扰参数辨识的数值模拟方法。用磁偶极子和旋转椭球壳混合模型来等效模拟AUV载体磁干扰,通过模拟航行获得多组磁测数据,据此建立磁干扰参数辨识模型,并采用L-SHADE算法求解。通过数值模拟实验定量分析研究磁测平台测磁精度随磁传感器、平台姿态及航向等误差的传播规律。研究结果表明:当磁传感器测量精度为10 nT、姿态测量精度为0.01°、航向测量精度为0.1°时,测磁误差可小于100 nT。设计的AUV磁测平台抗干扰试验表明,地磁场总量最大相对误差为1.07%。