期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Interfacial engineering of manganese-based oxides for aqueous zinc-ion batteries: Advances, mechanisms, challenges and perspectives
1
作者 Yuehua Qian Lingyun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期553-579,共27页
Manganese(Mn)-based materials are considered as one of the most promising cathodes in zinc-ion batteries(ZIBs) for large-scale energy storage applications because of their multivalence, cost-effectiveness,natural avai... Manganese(Mn)-based materials are considered as one of the most promising cathodes in zinc-ion batteries(ZIBs) for large-scale energy storage applications because of their multivalence, cost-effectiveness,natural availability, low toxicity, satisfactory capacity, and high operating voltage. In this review, the research status and related interface engineering strategies of Mn-based oxide cathode electrode materials for ZIB in recent years are summarized. Specifically, the review will focus on three types of interface engineering strategies, including interface reconstruction via cathode, interface reconstruction electrolyte, and protection via artificial cathode-electrolyte interphase(CEI) layer, within the context of their evolution of interface layer and corresponding electrochemical performance. A series of experimental variables, such as crystal structure, electrochemical reaction mechanism, and the necessary connection for the formation and evolution of interface layer, will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations. Finally, suggestions and strategies are provided for reasonably designing the cathode-electrolyte interface to realize the excellent performance of Mn-based oxide zinc-based batteries. 展开更多
关键词 Manganese oxides Manganese-based cathodes interfacial engineering Reaction mechanism Zinc-ion batteries
在线阅读 下载PDF
Generating highly active oxide-phosphide heterostructure through interfacial engineering to break the energy scaling relation toward urea-assisted natural seawater electrolysis
2
作者 Ngoc Quang Tran Nam Hoang Vu +6 位作者 Jianmin Yu Khanh Vy Pham Nguyen Thuy Tien Nguyen Tran Thuy-Kieu Truong Lishan Peng Thi Anh Le Yoshiyuki Kawazoe 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期687-699,I0014,共14页
Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy t... Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy to break through the bottleneck of natural seawater splitting.Herein,by DFT calculation,we demonstrated that the interface boundaries between Ni_(2)P and MoO_(2) play an essential role in the selfrelaxation of the Ni-O interfacial bond,effectively modulating a coordination number of intermediates to control independently their adsorption-free energy,thus circumventing the adsorption-energy scaling relation.Following this conceptual model,a well-defined 3D F-doped Ni_(2)P-MoO_(2) heterostructure microrod array was rationally designed via an interfacial engineering strategy toward urea-assisted natural seawater electrolysis.As a result,the F-Ni_(2)P-MoO_(2) exhibits eminently active and durable bifunctional catalysts for both HER and OER in acid,alkaline,and alkaline sea water-based electrolytes.By in-situ analysis,we found that a thin amorphous layer of NiOOH,which is evolved from the Ni_(2)P during anodic reaction,is real catalytic active sites for the OER and UOR processes.Remarkable,such electrode-assembled urea-assisted natural seawater electrolyzer requires low voltages of 1.29 and 1.75 V to drive 10 and600 mA cm^(-2)and demonstrates superior durability by operating continuously for 100 h at 100 mA cm^(-2),beyond commercial Pt/C||RuO_(2) and most previous reports. 展开更多
关键词 interfacial engineering Break scaling relationships Doping Natural seawater splitting Urea electrolysis
在线阅读 下载PDF
Interfacial Engineering Strategy for High-Performance Zn Metal Anodes 被引量:12
3
作者 Bin Li Xiaotan Zhang +4 位作者 Tingting Wang Zhangxing He Bingan Lu Shuquan Liang Jiang Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第1期121-151,共31页
Due to their high safety and low cost,rechargeable aqueous Zn-ion batteries(RAZIBs)have been receiving increased attention and are expected to be the next generation of energy storage systems.However,metal Zn anodes e... Due to their high safety and low cost,rechargeable aqueous Zn-ion batteries(RAZIBs)have been receiving increased attention and are expected to be the next generation of energy storage systems.However,metal Zn anodes exhibit a limited-service life and inferior reversibility owing to the issues of Zn dendrites and side reactions,which severely hinder the further development of RAZIBs.Researchers have attempted to design high-performance Zn anodes by interfacial engineering,including surface modification and the addition of electrolyte additives,to stabilize Zn anodes.The purpose is to achieve uniform Zn nucleation and flat Zn deposition by regulating the deposition behavior of Zn ions,which effectively improves the cycling stability of the Zn anode.This review comprehensively summarizes the reaction mechanisms of interfacial modification for inhibiting the growth of Zn dendrites and the occurrence of side reactions.In addition,the research progress of interfacial engineering strategies for RAZIBs is summarized and classified.Finally,prospects and suggestions are provided for the design of highly reversible Zn anodes. 展开更多
关键词 interfacial engineering Zn anode DENDRITES Side reactions Aqueous zinc-ion batteries
在线阅读 下载PDF
Dual interfacial engineering for efficient Cs_(2)AgBiBr_(6) based solar cells 被引量:3
4
作者 Tao Luo Yalan Zhang +7 位作者 Xiaoming Chang Junjie Fang Tianqi Niu Jing Lu Yuanyuan Fan Zicheng Ding Kui Zhao Shengzhong(Frank)Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期372-378,I0013,共8页
The emerging lead-free halide double perovskite solar cells have attracted widespread attentions due to their long-term stability and non-toxicity, but suffer from the low device performance. One efficiencylimiting fa... The emerging lead-free halide double perovskite solar cells have attracted widespread attentions due to their long-term stability and non-toxicity, but suffer from the low device performance. One efficiencylimiting factor is the improper contacts between the halide double perovskite and anode/cathode electrodes. Here, we improve the efficiency and stability of the bismuth-halide double perovskite based solar cells by a synergistic interface design for both electron and hole transport layers(ETL/HTL). The results show that the modification of the TiO_2 ETL with a thin hydrophobic C60 layer and replacement of the lithium-doped small molecule HTL with an un-doped conjugated polymer lead to higher surface quality of perovskite film and better energy-level alignment at the contacts. As a result, the optimized device shows reduced trap density, suppressed charge recombination and enhanced charge extraction, leading to an increase of 69% in device efficiency. In addition, the device also exhibits superior stability in ambient environment, heat stress and light bias after interface optimization. This work provides an efficient strategy for the device optimization of the emerging lead-free perovskite solar cells. 展开更多
关键词 Perovskite solar cells Double perovskites Synergistic interfacial engineering Efficiency and stability
在线阅读 下载PDF
Interfacial engineering in lead-free tin-based perovskite solar cells
5
作者 Zhenxi Wan Huagui Lai +9 位作者 Shengqiang Ren Rui He Yiting Jiang Jincheng Luo Qiyu Chen Xia Hao Ye Wang Jingquan Zhang Lili Wu Dewei Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期147-168,I0005,共23页
Lead(Pb)-free Tin(Sn)-based perovskite solar cells(PSCs)have been favored by the community due to their low toxicity,preferable bandgaps,and great potential to achieve high power conversion efficiencies(PCEs).Interfac... Lead(Pb)-free Tin(Sn)-based perovskite solar cells(PSCs)have been favored by the community due to their low toxicity,preferable bandgaps,and great potential to achieve high power conversion efficiencies(PCEs).Interfaces engineering plays important roles in developing highly efficient Sn-based PSCs via passivation of trap defects,alignment of energy levels,and incorporation of low-dimensional Sn-based perovskites.In this review,we summarize the development of Pb-free Sn-based perovskites and their applications in devices,especially the strategies of improving the interfaces.We also provide perspectives for future research.Our aim is to help the development of new and advanced approaches to achieving high-performance environment-friendly Pb-free Sn-based PSCs. 展开更多
关键词 Tin-based perovskites Perovskite solar cells interfacial engineering Environment-friendly Energy level alignment
在线阅读 下载PDF
Exploring catalytic behaviors of CoS_(2)-ReS_(2) heterojunction by interfacial engineering
6
作者 Jianmin Yu Yongteng Qian +12 位作者 Sohyeon Seo Yang Liu Huong T.D.Bui Ngoc Quang Tran Jinsun Lee Ashwani Kumar Hongdan Wang Yongguang Luo Xiaodong Shao Yunhee Cho Xinghui Liu Min Gyu Kim Hyoyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期11-18,I0002,共9页
Herein, a stable and efficient CoS_(2)-ReS_(2) electrocatalyst is successfully constructed by using the different molar ratios of CoS_(2) on ReS_(2). The size and morphology of the catalysts are significantly changed ... Herein, a stable and efficient CoS_(2)-ReS_(2) electrocatalyst is successfully constructed by using the different molar ratios of CoS_(2) on ReS_(2). The size and morphology of the catalysts are significantly changed after the CoS_(2) is grown on ReS_(2), providing regulation of the catalytic activity of ReS_(2). Particularly, the optimized CoS_(2)-ReS_(2) shows superior electrocatalytic properties with a low voltage of 1.48 V at 20 mA cm^(-2) for overall water splitting in 1.0 M KOH, which is smaller than the noble metal-based catalysts(1.77 V at 20 mA cm^(-2)). The XPS, XAS, and theoretical data confirm that the interfacial regulation of ReS_(2) by CoS_(2) can provide rich edge catalytic sites, which greatly optimizes the catalytic kinetics and drop the energy barrier for oxygen/hydrogen evolution reactions. Our results demonstrated that interfacial engineering is an efficient route for fabricating high-performance water splitting electrocatalysts. 展开更多
关键词 CoS_(2) ReS_(2) interfacial engineering Catalytic kinetics Water splitting
在线阅读 下载PDF
Extended phase diagram of La_(1-x)Ca_(x)MnO_(3)by interfacial engineering
7
作者 Kexuan Zhang Lili Qu +5 位作者 Feng Jin Guanyin Gao Enda Hua Zixun Zhang Lingfei Wang Wenbin Wu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期136-141,共6页
The interfacial enhanced ferromagnetism in maganite/ruthenate system is regarded as a promising path to broaden the potential of oxide-based electronic device applications.Here,we systematically studied the physical p... The interfacial enhanced ferromagnetism in maganite/ruthenate system is regarded as a promising path to broaden the potential of oxide-based electronic device applications.Here,we systematically studied the physical properties of La_(1-x)Ca_(x)MnO_(3)/SrRuO_(3)superlattices and compared them with the La1-x Cax MnO_(3)thin films and bulk compounds.The La_(1-x)Ca_(x)MnO_(3)/SrRuO_(3)superlattices exhibit significant enhancement of Curie temperature(TC)beyond the corresponding thin films and bulks.Based on these results,we constructed an extended phase diagram of La_(1-x)Ca_(x)MnO_(3)under interfacial engineering.We considered the interfacial charge transfer and structural proximity effects as the origin of the interfaceinduced high TC.The structural characterizations revealed a pronounced increase of B-O-B bond angle,which could be the main driving force for the high TCin the superlattices.Our work inspires a deeper understanding of the collective effects of interfacial charge transfer and structural proximity on the physical properties of oxide heterostructures. 展开更多
关键词 interfacial engineering oxygen octahedral coupling charge transfer oxide superlattices
在线阅读 下载PDF
A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium–Sulfur Batteries 被引量:1
8
作者 Bingxin Qi Xinyue Hong +4 位作者 Ying Jiang Jing Shi Mingrui Zhang Wen Yan Chao Lai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期219-252,共34页
The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high in... The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high interfacial impedances existing between the SSEs and the electrodes(both lithium anodes and sulfur cathodes)hinder the charge transfer and intensify the uneven deposition of lithium,which ultimately result in insufficient capacity utilization and poor cycling stability.Hence,the reduction of interfacial resistance between SSEs and electrodes is of paramount importance in the pursuit of efficacious solid-state batteries.In this review,we focus on the experimental strategies employed to enhance the interfacial contact between SSEs and electrodes,and summarize recent progresses of their applications in solidstate Li–S batteries.Moreover,the challenges and perspectives of rational interfacial design in practical solid-state Li–S batteries are outlined as well.We expect that this review will provide new insights into the further technique development and practical applications of solid-state lithium batteries. 展开更多
关键词 Solid-state lithium–sulfur batteries Solid-state electrolytes Electrode/electrolyte interface interfacial engineering Enhancing interfacial contact
在线阅读 下载PDF
Interfacial stress engineering toward enhancement of ferroelectricity in Al doped HfO_(2) thin films
9
作者 S X Chen M M Chen +2 位作者 Y Liu D W Cao G J Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期637-643,共7页
Ferroelectric HfO_(2)has attracted much attention owing to its superior ferroelectricity at an ultra-thin thickness and good compatibility with Si-based complementary metal-oxide-semiconductor(CMOS)technology.However,... Ferroelectric HfO_(2)has attracted much attention owing to its superior ferroelectricity at an ultra-thin thickness and good compatibility with Si-based complementary metal-oxide-semiconductor(CMOS)technology.However,the crystallization of polar orthorhombic phase(o-phase)HfO_(2)is less competitive,which greatly limits the ferroelectricity of the as-obtained ferroelectric HfO_(2)thin films.Fortunately,the crystallization of o-phase HfO_(2)can be thermodynamically modulated via interfacial stress engineering.In this paper,the growth of improved ferroelectric Al doped HfO_(2)(HfO_(2):Al)thin films on(111)-oriented Si substrate has been reported.Structural analysis has suggested that nonpolar monoclinic HfO_(2):Al grown on(111)-oriented Si substrate suffered from a strong compressive strain,which promoted the crystallization of(111)-oriented o-phase HfO_(2)in the as-grown HfO_(2):Al thin films.In addition,the in-plane lattice of(111)-oriented Si substrate matches well with that of(111)-oriented o-phase HfO_(2),which further thermally stabilizes the o-phase HfO_(2).Accordingly,an improved ferroelectricity with a remnant polarization(2P_(r))of 26.7C/cm^(2) has been obtained.The results shown in this work provide a simple way toward the preparation of improved ferroelectric HfO_(2)thin films. 展开更多
关键词 improved ferroelectricity interfacial stress engineering compressive strain HfO_(2)
在线阅读 下载PDF
Multiphase Interfacial Regulation Based on Hierarchical Porous Molybdenum Selenide to Build Anticorrosive and Multiband Tailorable Absorbers 被引量:10
10
作者 Tianbao Zhao Zirui Jia +3 位作者 Jinkun Liu Yan Zhang Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期85-105,共21页
Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electroma... Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electromagnetic environment,the design of multifunctional and multiband high efficiency EMW absorbers remains a tremendous challenge.In this work,we designed a three-dimensional porous structure via the salt melt synthesis strategy to optimize the impedance matching of the absorber.Also,through interfacial engineering,a molybdenum carbide transition layer was introduced between the molybdenum selenide nanoparticles and the three-dimensional porous carbon matrix to improve the absorption behavior of the absorber.The analysis indicates that the number and components of the heterogeneous interfaces have a significant impact on the EMW absorption performance of the absorber due to mechanisms such as interfacial polarization and conduction loss introduced by interfacial engineering.Wherein,the prepared MoSe_(2)/MoC/PNC composites showed excellent EMW absorption performance in C,X,and Ku bands,especially exhibiting a reflection loss of−59.09 dB and an effective absorption bandwidth of 6.96 GHz at 1.9 mm.The coordination between structure and components endows the absorber with strong absorption,broad bandwidth,thin thickness,and multi-frequency absorption characteristics.Remarkably,it can effectively reinforce the marine anticorrosion property of the epoxy resin coating on Q235 steel substrate.This study contributes to a deeper understanding of the relationship between interfacial engineering and the performance of EMW absorbers,and provides a reference for the design of multifunctional,multiband EMW absorption materials. 展开更多
关键词 interfacial engineering ANTICORROSION MULTIBAND Electromagnetic wave absorber
在线阅读 下载PDF
Interfacial nitrogen engineering of robust silicon/MXene anode toward high energy solid-state lithium-ion batteries 被引量:6
11
作者 Xiang Han Weijun Zhou +8 位作者 Minfeng Chen Jizhang Chen Guanwen Wang Bo Liu Linshan Luo Songyan Chen Qiaobao Zhang Siqi Shi Ching-Ping Wong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期727-735,共9页
Replacing the conventional carbonate electrolyte by solid-state electrolyte (SSE) will offer improved safety for lithium-ion batteries.To further improve the energy density,Silicon (Si) is attractive for next generati... Replacing the conventional carbonate electrolyte by solid-state electrolyte (SSE) will offer improved safety for lithium-ion batteries.To further improve the energy density,Silicon (Si) is attractive for next generation solid-state battery (SSB) because of its high specific capacity and low cost.High energy density and safe Si-based SSB,however,is plagued by large volume change that leads to poor mechanical stability and slow lithium ions transportation at the multiple interfaces between Si and SSE.Herein,we designed a self-integrated and monolithic Si/two dimensional layered T_(3)C_(2)T_(x)(MXene,T_(x) stands for terminal functional groups) electrode architecture with interfacial nitrogen engineering.During a heat treatment process,the polyacrylonitrile not only converts into amorphous carbon (a-C) that shells Si but also forms robust interfacial nitrogen chemical bonds that anchors Si and MXene.During repeated lithiation and delithiation processes,the robust interfacial engineered Si/MXene configuration enhances the mechanical adhesion between Si and MXene that improves the structure stability but also contributes to form stable solid-electrolyte interphase (SEI).In addition,the N-MXene provides fast lithium ions transportation pathways.Consequently,the Si/MXene with interfacial nitrogen engineering (denoted as Si-N-MXene) deliveres high-rate performance with a specific capacity of 1498 m Ah g^(-1) at a high current of 6.4 A g^(-1).A Si-N-MXene/NMC full cell exhibited a capacity retention of 80.5%after 200 cycles.The Si-N-MXene electrode is also applied to SSB and shows a relative stable cycling over 100 cycles,demonstrating the versatility of this concept. 展开更多
关键词 Solid-state lithium-ion battery Monolithic Si/MXene anode interfacial nitrogen engineering Lithium ions transportation
在线阅读 下载PDF
Synergistic Interfacial and Doping Engineering of Heterostructured NiCo(OH)_(x)-Co_(y)W as an Efficient Alkaline Hydrogen Evolution Electrocatalyst 被引量:2
12
作者 Ruopeng Li Hao Xu +7 位作者 Peixia Yang Dan Wang Yun Li Lihui Xiao Xiangyu Lu Bo Wang Jinqiu Zhang Maozhong An 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第8期94-106,共13页
To achieve high efficiency of water electrolysis to produce hydrogen(H_(2)),developing non-noble metal-based catalysts with consid-erable performance have been considered as a crucial strategy,which is correlated with... To achieve high efficiency of water electrolysis to produce hydrogen(H_(2)),developing non-noble metal-based catalysts with consid-erable performance have been considered as a crucial strategy,which is correlated with both the interphase properties and multi-metal synergistic effects.Herein,as a proof of concept,a delicate NiCo(OH)_(x)-CoyW catalyst with a bush-like heterostructure was realized via gas-template-assisted electrodeposition,followed by an electrochemical etching-growth process,which ensured a high active area and fast gas release kinetics for a superior hydrogen evolution reaction,with an overpotential of 21 and 139 mV at 10 and 500 mA cm^(−2),respectively.Physical and electrochemical analyses demonstrated that the synergistic effect of the NiCo(OH)_(x)-Co_(y)W heteroge-neous interface resulted in favorable electron redistribution and faster electron transfer efficiency.The amorphous NiCo(OH)_(x) strengthened the water dissociation step,and metal phase of CoW provided sufficient sites for moderate H immediate adsorption/H_(2) desorption.In addition,NiCo(OH)_(x)-CoyW exhibited desirable urea oxidation reaction activity for matching H_(2) generation with a low voltage of 1.51 V at 50 mA cm^(−2).More importantly,the synthesis and testing of the NiCo(OH)_(x)-CoyW catalyst in this study were all solar-powered,sug-gesting a promising environmentally friendly process for practical applications. 展开更多
关键词 interfacial and doping engineering Heterostructured electrocatalyst Solar-driven Hydrogen evolution Urea-assisted water splitting
在线阅读 下载PDF
High‑Quality Epitaxial N Doped Graphene on SiC with Tunable Interfacial Interactions via Electron/Ion Bridges for Stable Lithium‑Ion Storage 被引量:3
13
作者 Changlong Sun Xin Xu +5 位作者 Cenlin Gui Fuzhou Chen Yian Wang Shengzhou Chen Minhua Shao Jiahai Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期185-204,共20页
Tailoring the interfacial interaction in SiCbased anode materials is crucial to the accomplishment of higher energy capacities and longer cycle lives for lithium-ion storage.In this paper,atomic-scale tunable interfac... Tailoring the interfacial interaction in SiCbased anode materials is crucial to the accomplishment of higher energy capacities and longer cycle lives for lithium-ion storage.In this paper,atomic-scale tunable interfacial interaction is achieved by epitaxial growth of high-quality N doped graphene(NG)on SiC(NG@SiC).This well-designed NG@SiC heterojunction demonstrates an intrinsic electric field with intensive interfacial interaction,making it an ideal prototype to thoroughly understand the configurations of electron/ion bridges and the mechanisms of interatomic electron migration.Both density functional theory(DFT)analysis and electrochemical kinetic analysis reveal that these intriguing electron/ion bridges can control and tailor the interfacial interaction via the interfacial coupled chemical bonds,enhancing the interfacial charge transfer kinetics and preventing pulverization/aggregation.As a proof-of-concept study,this well-designed NG@SiC anode shows good reversible capacity(1197.5 mAh g^(−1)after 200 cycles at 0.1 A g^(−1))and cycling durability with 76.6%capacity retention at 447.8 mAh g^(−1)after 1000 cycles at 10.0 A g^(−1).As expected,the lithium-ion full cell(LiFePO_(4)/C//NG@SiC)shows superior rate capability and cycling stability.This interfacial interaction tailoring strategy via epitaxial growth method provides new opportunities for traditional SiC-based anodes to achieve high-performance lithium-ion storage and beyond. 展开更多
关键词 SIC HETEROJUNCTION interfacial engineering Lithium-ion battery DFT calculation
在线阅读 下载PDF
Laser-Derived Interfacial Confinement Enables Planar Growth of 2D SnS_(2) on Graphene for High-Flux Electron/Ion Bridging in Sodium Storage 被引量:1
14
作者 Xiaosa Xu Fei Xu +5 位作者 Xiuhai Zhang Changzhen Qu Jinbo Zhang Yuqian Qiu Rong Zhuang Hongqiang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第6期65-80,共16页
Establishing covalent heterointerfaces with face-to-face contact is promising for advanced energy storage,while challenge remains on how to inhibit the anisotropic growth of nucleated crystals on the matrix.Herein,fac... Establishing covalent heterointerfaces with face-to-face contact is promising for advanced energy storage,while challenge remains on how to inhibit the anisotropic growth of nucleated crystals on the matrix.Herein,faceto-face covalent bridging in-between the 2 D-nanosheets/graphene heterostructure is constructed by intentionally prebonding of laser-manufactured amorphous and metastable nanoparticles on graphene,where the amorphous nanoparticles were designed via the competitive oxidation of Sn-O and Sn-S bonds,and metastable feature was employed to facilitate the formation of the C-S-Sn covalent bonding in-between the heterostructure.The face-to-face bridging of ultrathin SnS;nanosheets on graphene enables the heterostructure huge covalent coupling area and high loading and thus renders unimpeded electron/ion transfer pathways and indestructible electrode structure,and impressive reversible capacity and rate capability for sodium-ion batteries,which rank among the top in records of the SnS_(2)-based anodes.Present work thus provides an alternative of constructing heterostructures with planar interfaces for electrochemical energy storage and even beyond. 展开更多
关键词 Laser-manufacturing METASTABLE interfacial engineering Covalent bridging Na-storage
在线阅读 下载PDF
Recent Developments of Transition Metal Compounds-Carbon Hybrid Electrodes for High Energy/Power Supercapacitors 被引量:7
15
作者 Kang Ren Zheng Liu +1 位作者 Tong Wei Zhuangjun Fan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第8期231-262,共32页
Due to their rapid power delivery,fast charging,and long cycle life,supercapacitors have become an important energy storage technology recently.However,to meet the continuously increasing demands in the fields of port... Due to their rapid power delivery,fast charging,and long cycle life,supercapacitors have become an important energy storage technology recently.However,to meet the continuously increasing demands in the fields of portable electronics,transportation,and future robotic technologies,supercapacitors with higher energy densities without sacrificing high power densities and cycle stabilities are still challenged.Transition metal compounds(TMCs)possessing high theoretical capacitance are always used as electrode materials to improve the energy densities of supercapacitors.However,the power densities and cycle lives of such TMCs-based electrodes are still inferior due to their low intrinsic conductivity and large volume expansion during the charge/discharge process,which greatly impede their large-scale applications.Most recently,the ideal integrating of TMCs and conductive carbon skeletons is considered as an effective solution to solve the above challenges.Herein,we summarize the recent developments of TMCs/carbon hybrid electrodes which exhibit both high energy/power densities from the aspects of structural design strategies,including conductive carbon skeleton,interface engineering,and electronic structure.Furthermore,the remaining challenges and future perspectives are also highlighted so as to provide strategies for the high energy/power TMCs/carbon-based supercapacitors. 展开更多
关键词 TMCs/carbon hybrid SUPERCAPACITORS High power density Carbon skeleton interfacial engineering Transition metal electronic structure
在线阅读 下载PDF
Room-Temperature Assembled MXene-Based Aerogels for High Mass-Loading Sodium-Ion Storage 被引量:4
16
作者 Fei Song Jian Hu +5 位作者 Guohao Li Jie Wang Shuijiao Chen Xiuqiang Xie Zhenjun Wu Nan Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第2期282-295,共14页
Low-temperature assembly of MXene nanosheets into three-dimensional(3D) robust aerogels addresses the crucial stability concern of the nano-building blocks during the fabrication process,which is of key importance for... Low-temperature assembly of MXene nanosheets into three-dimensional(3D) robust aerogels addresses the crucial stability concern of the nano-building blocks during the fabrication process,which is of key importance for transforming the fascinating properties at the nanoscale into the macroscopic scale for practical applications.Herein,suitable cross-linking agents(amino-propyltriethoxysilane,Mn^(2+),Fe^(2+),Zn^(2+),and Co^(2+)) as interfacial mediators to engineer the interlayer interactions are reported to realize the graphene oxide(GO)-assisted assembly of Ti_(3)C_(2)T_(x) MXene aerogel at room temperature.This elaborate aerogel construction not only suppresses the oxidation degradation of Ti_(3)C_(2)T_(x) but also generates porous aerogels with a high Ti_(3)C_(2)T_(x) content(87 wt%) and robustness,thereby guaranteeing the functional accessibility of Ti_(3)C_(2)T_(x) nanosheets and operational reliability as integrated functional materials.In combination with a further sulfur modification,the Ti_(3)C_(2)T_(x) aerogel electrode shows promising electrochemical performances as the freestanding anode for sodium-ion storage.Even at an ultrahigh loading mass of 12.3 mg cm^(-2),a pronounced areal capacity of 1.26 mAh cm^(-2) at a current density of 0.1 A g^(-1) has been achieved,which is of practical significance.This work conceptually suggests a new way to exert the utmost surface functionalities of MXenes in 3D monolithic form and can be an inspiring scaffold to promote the application of MXenes in different areas. 展开更多
关键词 MXenes Aerogel Room-temperature assembly interfacial engineering Sodium-ion storage
在线阅读 下载PDF
Interface Reversible Electric Field Regulated by Amphoteric Charged Protein-Based Coating Toward High-Rate and Robust Zn Anode 被引量:4
17
作者 Meihua Zhu Qing Ran +7 位作者 Houhou Huang Yunfei Xie Mengxiao Zhong Geyu Lu Fu-Quan Bai Xing-You Lang Xiaoteng Jia Danming Chao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期535-548,共14页
Metallic interface engineering is a promising strategy to stabilize Zn anode via promoting Zn^(2+) uniform deposition.However,strong interactions between the coating and Zn^(2+) and sluggish transport of Zn^(2+) lead ... Metallic interface engineering is a promising strategy to stabilize Zn anode via promoting Zn^(2+) uniform deposition.However,strong interactions between the coating and Zn^(2+) and sluggish transport of Zn^(2+) lead to high anodic polarization.Here,we present a bio-inspired silk fibroin(SF)coating with amphoteric charges to construct an interface reversible electric field,which manipulates the transfer kinetics of Zn^(2+) and reduces anodic polarization.The alternating positively and negatively charged surface as a build-in driving force can expedite and homogenize Zn^(2+) flux via the inter-play between the charged coating and adsorbed ions,endowing the Zn-SF anode with low polarization voltage and stable plating/stripping.Experimental analyses with theo-retical calculations suggest that SF can facilitate the desolvation of[Zn(H_(2)O)_(6)]^(2+) and provide nucleation sites for uniform deposition.Consequently,the Zn-SF anode delivers a high-rate performance with low voltage polarization(83 mV at 20 mA cm^(−2)) and excellent stability(1500 h at 1 mA cm^(−2);500 h at 10 mA cm^(−2)),realizing exceptional cumulative capacity of 2.5 Ah cm^(−2).The full cell coupled with Zn_(x)V_(2)O_(5)·nH_(2)O(ZnVO)cathode achieves specific energy of~270.5/150.6 Wh kg^(−1)(at 0.5/10 A g^(−1))with-99.8% Coulombic efficiency and retains~80.3%(at 5.0 A g^(−1))after 3000 cycles. 展开更多
关键词 Silk fibroin coating Zn anode Amphoteric charge interfacial engineering Aqueous zinc-ion batteries
在线阅读 下载PDF
Insights into the efficient charge separation over Nb_(2)O_(5)/2D-C_(3)N_(4) heterostructure for exceptional visible-light driven H_(2) evolution 被引量:4
18
作者 Jia Yan Ting Wang +6 位作者 Siyao Qiu Zhilong Song Wangqin Zhu Xianhu Liu Jiabiao Lian Chenghua Sun Huaming Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期548-555,共8页
Two-dimensional carbon nitride(2 D-C_(3) N_(4))nanosheets are promising materials in photocatalytic water splitting,but still suffer from easy agglomeration and fast photogene rated electron-hole pairs recombination.T... Two-dimensional carbon nitride(2 D-C_(3) N_(4))nanosheets are promising materials in photocatalytic water splitting,but still suffer from easy agglomeration and fast photogene rated electron-hole pairs recombination.To tackle this issue,herein,a hierarchical Nb_(2) O_(5)/2 D-C_(3) N_(4) heterostructure is precisely constructed and the built-in electric field between Nb_(2)O_(5) and 2 D-C_(3) N_(4) can provide the driving force to separate/transfer the charge carriers efficiently.Moreover,the strongly Lewis acidic Nb_(2)O_(5) can adsorb TEOA molecules on its surface at locally high concentrations to facilitate the oxidation reaction kinetics under irradiation,resulting in efficient photogene rated electrons-holes separation and exceptional photocatalytic hydrogen evolution.As expected,the champion Nb_(2)O_(5)/2 D-C_(3)N_(4) heterostructure achieves an exceptional H2 evolution rate of 31.6 mmol g^(-1) h^(-1),which is 213.6 times and 4.3 times higher than that of pristine Nb_(2)O_(5) and2 D-C_(3)N_(4),respectively.Moreover,the champion heterostructure possesses a high apparent quantum efficiency(AQE)of 45.08%atλ=405 nm and superior cycling stability.Furthermore,a possible photocatalytic mechanism of the energy band alignment at the hetero-interface is proposed based on the systematical characterizations accompanied by density functional theory(DFT)calculations.This work paves the way for the precise construction of a high-quality heterostructured photocatalyst with efficient charge separation to boost hydrogen production. 展开更多
关键词 interfacial engineering Nb_(2)O_(5)/2D-C_(3)N_(4)heterostructure Energy band alignment Hydrogen production Density functional theory
在线阅读 下载PDF
Tuning the reversible chemisorption of hydroxyl ions to promote the electrocatalysis on ultrathin metal-organic framework nanosheets 被引量:1
19
作者 Hong Yu Yao Jing +1 位作者 Cheng-Feng Du Jiong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期71-77,共7页
Interfacial engineering to alter the configuration of active sites in heterogeneous catalysts is a potential strategy for activity enhancement,but it remains unelucidated for metal-organic frameworks(MOFs).Here,we dem... Interfacial engineering to alter the configuration of active sites in heterogeneous catalysts is a potential strategy for activity enhancement,but it remains unelucidated for metal-organic frameworks(MOFs).Here,we demonstrate that the surface of two-dimensional Co-based MOF is modified by decorating Ag quantum dots(QDs)simply through in-situ reduction of Ag+ions.Toward oxygen evolution reaction(OER),it reveals that the catalysis is mediated by the reversible redox of Co sites between Co^(3+) and Co^(4+) states coupling with transfer of OHions.The decoration of Ag QDs decreases the redox potential of Co sites,and thus effectively decreases the overpotential of OER.The TOFs of Co sites are increased by 77 times to reach 5.4 s^(-1) at an overpotential of 0.35 V.We attribute the activity enhancement to the tuning of the coupling process between Co sites and OHions during the redox of Co sites by Ag QDs decoration based on Pourbaix analysis. 展开更多
关键词 2D metal-organic frameworks interfacial engineering Pourbaix analysis Chemisorption of hydroxyl ions Oxygen evolution reaction
在线阅读 下载PDF
Surface modulation of halide perovskite films for efficient and stable solar cells 被引量:1
20
作者 Qinxuan Dai Chao Luo +3 位作者 Xianjin Wang Feng Gao Xiaole Jiang Qing Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期24-35,共12页
As the main distribution place of deep-level defects and the entrance of water, the interface is critical to determining both the power conversion efficiency(PCE) and the stability of perovskite solar cells(PSCs). Sui... As the main distribution place of deep-level defects and the entrance of water, the interface is critical to determining both the power conversion efficiency(PCE) and the stability of perovskite solar cells(PSCs). Suitable interface design can dramatically passivate interface defects and optimize energy level alignment for suppressing the nonradiative recombination and effectively extracting the photogenerated carriers towards higher PCE. Meanwhile, a proper interface design can also block the interface diffusion of ions for high operational stability. Therefore, interface modification is of great significance to make the PSCs more efficient and stable. Upon optimized material choices, the three-dimensional halide perovskite graded junction layer, low-dimensional halide perovskite interface layer and organic salt passivation layer have been constructed on perovskite films for superior PSCs, yet a systematic review of them is missing. Thus, a guide and summary of recent advances in modulating the perovskite films interface is necessary for the further development of more efficient interface modification. 展开更多
关键词 perovskite solar cells interfacial engineering surface modulation organic salt surface layer
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部