期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Preparation of spherical HMX@PDA-based PBX by co-axial droplet microfluidic technology:Enhancing the interfacial effect and safety performance of composite microspheres 被引量:1
1
作者 Yunyan Guo Yi Liu +6 位作者 Jiani Xie Jiawei Li Fan Wang Jinshan Lei Chongwei An Zhongliang Ma Bidong Wu 《Defence Technology(防务技术)》 2025年第3期73-83,共11页
Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In ... Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications. 展开更多
关键词 Droplet microfluidic technology interfacial reinforcement Safety performance Surface modification POLYDOPAMINE HMX
在线阅读 下载PDF
Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects
2
作者 HUANG Rui LIU Shengjie +1 位作者 WU Qingyuan ZHENG Nanfeng 《无机化学学报》 北大核心 2025年第1期201-212,共12页
The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts c... The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts contained Pd species in mixed valence states,with high valence Pd at the metal‑support interface and zero valence Pd at the metal surface.While the strong coordination of triphenylphosphine(PPh3)to Pd0 on the Pd surface prevents the adsorption of halogenated nitroaromatics and thus dehalogenation,the coordination of sodium metavanadate(NaVO3)to high‑valence Pd sites at the interface helps to activate H2 in a heterolytic pathway for the selective hydrogenation of nitro‑groups.The excellent catalytic performance of the interfacial active sites enables the selective hydrogenation of a wide range of halogenated nitroaromatics. 展开更多
关键词 halogenated nitroaromatic heterogeneous catalysis HYDROGENATION selectivity control interfacial effect
在线阅读 下载PDF
Controlling interfacial adhesion during the transfer of large-area 2D materials:mechanisms,strategies,and research advances
3
作者 HU Rong SONG Jia +4 位作者 HUANG Wei ZHOU An-na LIN Jia-long CAO Yang HU Sheng 《新型炭材料(中英文)》 北大核心 2025年第3期553-583,共31页
Large-area two-dimensional(2D)materials,such as graphene,MoS_(2),WS_(2),h-BN,black phosphorus,and MXenes,are a class of advanced materials with many possible applications.Different applications need different substrat... Large-area two-dimensional(2D)materials,such as graphene,MoS_(2),WS_(2),h-BN,black phosphorus,and MXenes,are a class of advanced materials with many possible applications.Different applications need different substrates,and each substrate may need a different way of transferring the 2D material onto it.Problems such as local stress concentrations,an uneven surface tension,inconsistent adhesion,mechanical damage and contamination during the transfer can adversely affect the quality and properties of the transferred material.Therefore,how to improve the integrity,flatness and cleanness of large area 2D materials is a challenge.In order to achieve high-quality transfer,the main concern is to control the interface adhesion between the substrate,the 2D material and the transfer medium.This review focuses on this topic,and finally,in order to promote the industrial use of large area 2D materials,provides a recipe for this transfer process based on the requirements of the application,and points out the current problems and directions for future development. 展开更多
关键词 2D materials GRAPHENE LARGE-AREA interfacial adhesion modulation High quality transfer
在线阅读 下载PDF
Interfacial reinforcement of core-shell HMX@energetic polymer composites featuring enhanced thermal and safety performance 被引量:2
4
作者 Binghui Duan Hongchang Mo +3 位作者 Bojun Tan Xianming Lu Bozhou Wang Ning Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期387-399,共13页
The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves... The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns. 展开更多
关键词 HMX crystals Polyalcohol bonding agent Energetic polymer Core-shell structure interfacial reinforcement
在线阅读 下载PDF
The reaction mechanism and interfacial crystallization of Al nanoparticle-embedded Ni under shock loading
5
作者 Yifan Xie Jian-Li Shao +1 位作者 Rui Liu Pengwan Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期114-124,共11页
The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nan... The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nanoparticle,interfacial crystallization and dissolution are the main characteristics.The reaction degree of Al particle first increases linearly and then logarithmically with time driven by rapid mechanical mixing and following dissolution.The reaction rate increases with the decrease of particle diameter,however,the reaction is seriously hindered by interfacial crystallization when the diameter is lower than 9 nm in our simulations.Meanwhile,we found a negative exponential growth in the fraction of crystallized Al atoms,and the crystallinity of B2-NiAl(up to 20%)is positively correlated with the specific surface area of Al particle.This can be attributed to the formation mechanism of B2-NiAl by structural evolution of finite mixing layer near the collapsed interface.For shock melting of both Al particle and Ni matrix,the liquid-liquid phase inter-diffusion is the main reaction mechanism that can be enhanced by the formation of internal jet.In addition,the enhanced diffusion is manifested in the logarithmic growth law of mean square displacement,which results in an almost constant reaction rate similar to the mechanical mixing process. 展开更多
关键词 Shock-induced reaction Molecular dynamics simulations interfacial crystallization Reaction mechanism
在线阅读 下载PDF
Relationship between interfacial structure and property of steel-mushy Al-28Pb bonding pate 被引量:1
6
作者 张鹏 杜云慧 +3 位作者 刘汉武 张君 曾大本 巴立民 《Journal of Central South University of Technology》 EI 2006年第1期12-16,共5页
The interfacial properties of steel-mushy Al-28Pb bonding plate with different interfacial structures, and the influence of ratio of Fe-Al compound at the interface on interfacial shear strength were investigated. The... The interfacial properties of steel-mushy Al-28Pb bonding plate with different interfacial structures, and the influence of ratio of Fe-Al compound at the interface on interfacial shear strength were investigated. The results show that there is a nonlinear relationship between the ratio of Fe-Al compound at the interface and the interfacial shear strength. When the ratio of Fe-Al compound at the interface is smaller than 71.4%, with the increase of the ratio of Fe-Al compound at the interface, the interfacial shear strength increases gradually; when the ratio of Fe-Al compound at the interface is larger than 71.4%, with the increase of the ratio of Fe-Al compound at the interface, the interfacial shear strength decreases continuously; when the ratio of Fe-Al compound at the interface is 71.4%, the largest interfacial shear strength 70.2MPa is obtained. 展开更多
关键词 interfacial structure ratio of Fe-Al compound interfacial shear strength
在线阅读 下载PDF
A molecular dynamics study of calcium silicate hydrates-aggregate interfacial interactions and influence of moisture 被引量:5
7
作者 ZHOU Yang PENG Ze-chuan +3 位作者 HUANG Jia-le MA Tao HUANG Xiao-ming MIAO Chang-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期16-28,共13页
The interface properties between hydrated cement paste(hcp)and aggregates largely determine the various performances of concrete.In this work,molecular dynamics simulations were employed to explore the atomistic inter... The interface properties between hydrated cement paste(hcp)and aggregates largely determine the various performances of concrete.In this work,molecular dynamics simulations were employed to explore the atomistic interaction mechanisms between the commonly used aggregate phase calcite/silica and calcium silicate hydrates(C-S-H),as well as the effect of moisture.The results suggest that the C-S-H/calcite interface is relatively strong and stable under both dry and moist conditions,which is caused by the high-strength interfacial connections formed between calcium ions from calcite and high-polarity non-bridging oxygen atoms from the C-S-H surface.Silica can be also adsorbed on the dry C-S-H surface by the H-bonds;however,the presence of water molecules on the interface may substantially decrease the affinities.Furthermore,the dynamics interface separation tests of C-S-H/aggregates were also implemented by molecular dynamics.The shape of the calculated stress-separation distance curves obeys the quasi-static cohesive law obtained experimentally.The moisture conditions and strain rates were found to affect the separation process of C-S-H/silica.A wetter interface and smaller loading rate may lead to a lower adhesion strength.The mechanisms interpreted here may shed new lights on the understandings of hcp/aggregate interactions at a nano-length scale and creation of high performance cementitious materials. 展开更多
关键词 calcium silicate hydrate AGGREGATE interfacial connections molecular dynamics simulation MOISTURE
在线阅读 下载PDF
Interfacial coupling effects in g-C_(3)N_(4)/In_(x)Sb_(2-x)S_(3) heterojunction for enhanced photocatalytic activity under visible light 被引量:6
8
作者 YANG Ting HU Xin-yu +2 位作者 WANG Jun-tao YANG Tian-li WANG Wen-lei 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1447-1462,共16页
A series of In_(x)Sb_(2-x)S_(3) nanosheets modified g-C_(3)N_(4)(In_(x)Sb_(2-x)S_(3)-TCN)heterojunctions with different g-C_(3)N_(4) contents were fabricated by an in situ deposition method.All the In_(x)Sb_(2-x)S_(3)... A series of In_(x)Sb_(2-x)S_(3) nanosheets modified g-C_(3)N_(4)(In_(x)Sb_(2-x)S_(3)-TCN)heterojunctions with different g-C_(3)N_(4) contents were fabricated by an in situ deposition method.All the In_(x)Sb_(2-x)S_(3)-TCN composites were applied as photocatalysts in Cr(Ⅵ)polluted water treatment and the results displayed that In_(x)Sb_(2-x)S_(3)-TCN could effectively remove Cr(Ⅵ)under visible light through synergistic effects of adsorption and photocatalytic reduction.Especially,In_(x)Sb_(2-x)S_(3)-TCN-70(70 mg g-C_(3)N_(4)) exhibited the most excellent adsorption and photocatalytic reduction performance among all composites,which possessed a high equilibrium adsorption capacity of 12.45 mg/g in a 30.0 mg/L Cr(Ⅵ)aqueous solution,and reduced Cr(Ⅵ)to Cr(Ⅲ)within 10 min under visible light irradiation.DRS and PL results indicated that the interfacial coupling effect between g-C_(3)N_(4)and In_(x)Sb_(2-x)S_(3) enhanced the utilization efficiency of visible light and suppressed photoinduced carrier recombination,which improved the photocatalytic activity of composites.Moreover,the photocatalyst exhibited satisfactory reduction activity and good stability after 5 cycles of Cr(Ⅵ)adsorptionphotoreduction. 展开更多
关键词 In_(x)Sb_(2-x)S_(3)-TCN PHOTOCATALYST interfacial coupling effects Cr(Ⅵ)-contained wastewater adsorption photocatalytic reduction
在线阅读 下载PDF
Hydration film measurement on mica and coal surfaces using atomic force microscopy and interfacial interactions 被引量:4
9
作者 XING Yao-wen GUI Xia-hui CAO Yi-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1295-1305,共11页
The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces... The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces were measured directly by atomic force microscopy (AFM) based on the bending mode of the nominal constant compliance regime in AFM force curve in the present study. Surface and solid-liquid interfacial energies were calculated to explain the forming mechanism of the hydration film and atomic force microscopy data. The results show that there are significant differences in the structure and thickness of hydration films on coal and mica surfaces. Hydration film formed on mica surface with the thickness of 22.5 nm. In contrast, the bend was not detected in the nominal constant compliance regime. The van der Waals and polar interactions between both mica and coal and water molecules are characterized by an attractive effect, while the polar attractive free energy between water and mica (-87.36 mN/m) is significantly larger than that between water and coal (-32.89 mN/m), which leads to a thicker and firmer hydration layer on the mica surface. The interfacial interaction free energy of the coal/water/bubble is greater than that of mica. The polar attractive force is large enough to overcome the repulsive van der Waals force and the low energy barrier of film rupture, achieving coal particle bubble adhesion with a total interfacial free energy of-56.30 mN/m. 展开更多
关键词 hydration film atomic force microscope surface energy interfacial interaction
在线阅读 下载PDF
Effects of rapid solidification process and 0.1%Pr/Nd addition on characteristics of Sn-9Zn solder alloy and interfacial properties of Cu/solder/Cu joints 被引量:2
10
作者 赵国际 文光华 +1 位作者 盛光敏 景彦霞 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1831-1838,共8页
Rapidly solidified Sn-9Zn-0.1Pr(/Nd) alloy foils were prepared by melt-spinning method. Through comparison, the effects of rapid solidification process and 0.1%Pr/Nd(mass fraction) addition on the microstructure, ther... Rapidly solidified Sn-9Zn-0.1Pr(/Nd) alloy foils were prepared by melt-spinning method. Through comparison, the effects of rapid solidification process and 0.1%Pr/Nd(mass fraction) addition on the microstructure, thermodynamic characteristic of Sn-9Zn solder alloy were analyzed. The tensile-shear tests were used to evaluate the mechanical properties of solder/Cu joints. The results show that the rapid solidification process can greatly refine the microstructure of Sn-9Zn-0.1Pr(/Nd) alloys. After rapid solidification, the effects of Pr/Nd addition on microstructure are depressed. The pasty range of the rapidly solidified Sn-Zn-RE solders is also reduced significantly. The mechanical properties of solder/Cu joints are obviously improved using the rapidly solidified Sn-9Zn-0.1Pr(/Nd) solder alloy, which results in the formation of uniform interface. The promotion effect of Nd addition in Sn-9Zn alloy on the interfacial reaction of solder/Cu joint is more remarkable than that of Pr. 展开更多
关键词 rapid solidification Sn-Zn-RE solder microstructure interfacial property
在线阅读 下载PDF
Electrochemical performance of interfacially polymerized polyaniline nanofibres as electrode materials for non-aqueous redox supercapacitors 被引量:2
11
作者 李劼 方静 +3 位作者 崔沐 卢海 张治安 赖延清 《Journal of Central South University》 SCIE EI CAS 2011年第1期78-82,共5页
H+ doped polyaniline nanofibre(PH) was synthesized by interfacial polymerization and polyanilines doped with Li salt(PLI and PHLI) were prepared by immersing emeraldine base(EB) and H+ doped polyaniline in 1 mol/L LiP... H+ doped polyaniline nanofibre(PH) was synthesized by interfacial polymerization and polyanilines doped with Li salt(PLI and PHLI) were prepared by immersing emeraldine base(EB) and H+ doped polyaniline in 1 mol/L LiPF6/(EC-EMC-DMC),respectively.PH,PLI and PHLI were all characterized by scanning electron microscopy(SEM) and Fourier transform infrared(FT-IR) spectrometry.With 1 mol/L LiPF6/(EC-EMC-DMC) as electrolyte,PH,PHLI and PLI were used as the active materials of symmetric non-aqueous redox supercapacitors.PLI shows the highest initial specific capacitance of 120 F/g(47 F/g for PH and 66 F/g for PHLI) among three samples.After 500 cycles,the specific capacitance of PLI remains 75 F/g,indicating the good cycleability. 展开更多
关键词 polyaniline nanofibre redox supercapacitor interfacial polymerization lithium salt doping
在线阅读 下载PDF
Degradation of Lix984N and its effect on interfacial emulsion 被引量:2
12
作者 刘晓荣 邱冠周 胡岳华 《Journal of Central South University of Technology》 EI 2006年第6期668-672,共5页
The organic phase separated from the interfacial crud provided by Dexing copper mine in Jiangxi, China, was analyzed by combined gas chromatography-mass spectroscopy. The results show that many kinds of emphiphiles co... The organic phase separated from the interfacial crud provided by Dexing copper mine in Jiangxi, China, was analyzed by combined gas chromatography-mass spectroscopy. The results show that many kinds of emphiphiles containing such hydrophilic groups as carbonyl, carboxyl, sulphonyl or acylamine exist in organic phase. Conclusively, Lix984N would degrade gradually during a long-term contact with the acidic aqueous feed and strip reagents. Lix84 and nonylphenol as effective components of Lix984N degraded almost completely after long-term recycling. Lix984N degraded through such reactions as Beck.mann rearrange, hydrolysis and sulphofication. The degradation of Lix984N would deteriorate solvent extraction and disengagement performance, and result in a more stable interracial emulsion. 展开更多
关键词 interfacial emulsion DEGRADATION Lix984N copper solvent extraction
在线阅读 下载PDF
Simulation of facet dendrite growth with strong interfacial energy anisotropy by phase field method 被引量:3
13
作者 袁训锋 刘宝盈 +2 位作者 李春 周春生 丁雨田 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期855-861,共7页
Numerical simulations based on a new regularized phase-field model were presented, to simulate the solidification of hexagonal close-packed materials with strong interfacial energy anisotropies. Results show that the ... Numerical simulations based on a new regularized phase-field model were presented, to simulate the solidification of hexagonal close-packed materials with strong interfacial energy anisotropies. Results show that the crystal grows into facet dendrites,displaying six-fold symmetry. The size of initial crystals has an effect on the branching-off of the principal branch tip along the<100> direction, which is eliminated by setting the b/a(a and b are the semi-major and semi-minor sizes in the initial elliptical crystals, respectively) value to be less than or equal to 1. With an increase in the undercooling value, the equilibrium morphology of the crystal changes from a star-like shape to facet dendrites without side branches. The steady-state tip velocity increases exponentially when the dimensionless undercooling is below the critical value. With a further increase in the undercooling value, the equilibrium morphology of the crystal grows into a developed side-branch structure, and the steady-state tip velocity of the facet dendrites increases linearly. The facet dendrite growth has controlled diffusion and kinetics. 展开更多
关键词 phase field facet dendrite hcp materials interfacial energy anisotropy dimensionless undercooling
在线阅读 下载PDF
INFLUENCE OF INTERFACIAL STRENGTH ON THE FRACTURE TOUGHNESS OF GLASS-CERAMIC MATRIX COMPOSITEST
14
作者 Wang Lingsen Liu Ruoyu +1 位作者 Zang Jinsen Fan Yi(PowderMetallurgy Research institute, Central South University ofTechnology, Changsha 410083, China) 《Journal of Central South University》 SCIE EI CAS 1997年第1期1-4,共4页
Nine kinds of glass-ceramic matrix composites with different compositions and inter facial strength(L) were prepared. The influence of Ti on the fracture toughness (K1c.) of composites was studied. It was discoved tha... Nine kinds of glass-ceramic matrix composites with different compositions and inter facial strength(L) were prepared. The influence of Ti on the fracture toughness (K1c.) of composites was studied. It was discoved that, for the system no chemical reaction taking place at the interface, K1c. increased proportionallywith ts increasing at the first stage, then decreased when ts reached a certain value. According to this result,a model of relationship between L, thermal mismatch (Δαr) and K1c was built up. If a chemical reaction tookplace and a new phase was formed in the interface, the K1c. of composite was effected by the combination ofrs, chemical bonding, radial inter facial stress and other factors. 展开更多
关键词 COMPOSITE interfacial STRENGTH FRACTURE TOUGHNESS
在线阅读 下载PDF
Role of Interfacial Viscosity and pH in L-Phenylalanine,L-Tryptophan Molecular Rotors
15
作者 N.Meenakshisundaram Kamatchi Sankaranarayanan 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第5期1629-1633,共5页
Protein folding involves the aminoacid sequence to come forth and form an energy minimized structure.Recently molecular crowding leading to increase in viscosity is said to be one of the major concerns affecting prote... Protein folding involves the aminoacid sequence to come forth and form an energy minimized structure.Recently molecular crowding leading to increase in viscosity is said to be one of the major concerns affecting protein folding.Many external fluorescent probes are used to detect such increases in viscosity.Since most of the protein sequences contain L-Phe and L-Trp,in this study we have used these aminoacids as probes to detect changes in viscosity.This study will help to advance the knowledge on molecular crowding effects in protein folding. 展开更多
关键词 Protein folding Molecular crowders interfacial viscosity Fluorescent probes
在线阅读 下载PDF
Dispersion of ultrafine alumina in modifier solution ——the role of polar interfacial interaction
16
作者 HU Yue hua 1,QIU Guan zhou 1,J.D.Miller 2 (1.Department of Mineral Engineering, Central South University, Changsha 410083, China 2.Department of Metallurgical Engineering, University of Utah, 412 WBB, Salt Lake City, UT 84112, USA) 《Journal of Central South University of Technology》 2001年第1期18-23,共6页
Dispersion of ultrafine alumina suspension is examined by using particle size analyzer. The zeta potential and contact angle measurements were used to discuss the electrokinetic behavior and surface wettability of alu... Dispersion of ultrafine alumina suspension is examined by using particle size analyzer. The zeta potential and contact angle measurements were used to discuss the electrokinetic behavior and surface wettability of alumina in modifier solution, and to calculate the electrostatic interaction forces and interfacial interaction forces between alumina particles. The aggregation of ultrafine alumina occurs near its PZC. Addition of modifier increases the zeta potential of alumina and its surface hydrophilicity, resulting in increase of electrostatic and hydration repulsion. It makes the suspension of ultrafine alumina completely dispersed. The average particle size of the suspension is decreased from 1.73 μm in absence of modifier to 0.8 μm in the presence of tripolyphosphate. According to polar interfacial interaction approach, the hydration forces responsible for the stability of alumina suspension in the presence of modifier have also been obtained. The extended DLVO theory is successful to describe the dispersion behavior of ultrafine alumina in modifier solution. 展开更多
关键词 DISPERSION ALUMINA MODIFIER polar interfacial interaction extended DLVO theory
在线阅读 下载PDF
Hydrophilic-substrate-assisted Fabrication of Flexible and Transparent Au NTOH@PDMS Film for SERS In-situ Detection of Crystal Violet 被引量:1
17
作者 ZHANG Xin-tong LIU Hong-yu +2 位作者 DONG Ming-yuan WANG Li LIN Xiang 《分析测试学报》 北大核心 2025年第3期411-419,共9页
This article presented a facile fabrication process for polydimethylsiloxane(PDMS)composite gold nanotris⁃octahedra(Au NTOH)for a flexible SERS sensor with high sensitivity.Specifically,Au NTOH with excellent SERS beh... This article presented a facile fabrication process for polydimethylsiloxane(PDMS)composite gold nanotris⁃octahedra(Au NTOH)for a flexible SERS sensor with high sensitivity.Specifically,Au NTOH with excellent SERS behaviors was synthesized using a seed-mediated growth method and the dimensions of the Au NTOH was easily tuned.In addition,the influence of size on the SERS performance of their monolayers was systematically investigated,and the Au NTOH with the size of 61 nm possessed the best SERS performance.Importantly,a hydrophilic-substrateassisted interfacial self-assembled monolayer transfer technique was proposed to transfer Au NTOH onto PDMS films,resulting in forming flexible and transparent Au NTOH@PDMS substrates.Furthermore,the excellent signal homoge⁃neity of this substrate was demonstrated and the sensitivity was verified by a measurement of crystal violet(CV)as low as 1×10^(-8) mol/L.As a result,this SERS sensor is progressing for applying in the identification of trace contaminants in broad fields. 展开更多
关键词 Au NTOH PDMS interfacial self-assembly SERS crystal violet
在线阅读 下载PDF
Synergistic properties of the binary mixed system of natural green surfactants:Camellia oleifera saponin and sodium cocoyl glycinate
18
作者 Yawen Li Weixin Li +3 位作者 Fenglun Zhang Shihong Ma Jianxin Jiang Liwei Zhu 《日用化学工业(中英文)》 北大核心 2025年第7期831-843,共13页
Sodium cocoyl glycinate(SCG),an environmentally friendly anionic amino acid surfactant,is widely used in daily chemical products as an upgraded alternative to traditional surfactants.In this study,crude Camellia oleif... Sodium cocoyl glycinate(SCG),an environmentally friendly anionic amino acid surfactant,is widely used in daily chemical products as an upgraded alternative to traditional surfactants.In this study,crude Camellia oleifera saponin(COS)was purified using AB-8 macroporous adsorption resin,and its composition and structure were analyzed.The effects of different mole fractions of COS(αCOS)on surface tension(γ),oil-water interfacial tension(IFT),emulsification,and foam properties of COS-SCG binary mixed systems were investigated in mixtures of SCG with purified COS.The stability ofγand foamability under diverse environmental conditions were also discussed.The results indicated that the COS-SCG system exhibited remarkable surface-active synergism.The minimum critical micelle concentration(cmc)of the mixed system was lower than that of SCG,and adding a small mole fraction of COS(1%-2%)induced a synergistic reduction ofγ.Specifically,the cmc andγwere 2.50×10-4 mol/L and 23.1 mN/m forαCOS=1%,respectively.The system exhibited exceptional IFT reduction capacity,achieving a minimum value of 1.42 mN/m atαCOS=10%.The mixed system reached a foaming volume(atαCOS=50%)and foam stability(atαCOS=75%)were 51.0 mL and 97.37%,respectively.Microscopic analysis further confirmed these outstanding foam properties.Moreover,the COS-SCG system displayed reducedγwith enhanced foaming volume under elevated temperatures(35-75℃)and salinity(0-20 g/L).However,acidic conditions and hard water compromised bothγstability and foamability. 展开更多
关键词 SAPONIN sodium cocoyl glycinate binary mixed system synergism interfacial tension foam properties
在线阅读 下载PDF
Tetrahedral Amorphous Carbon Films for Stainless Steel Bipolar Plates of Proton Exchange Membrane Fuel Cells
19
作者 XIA Zhengwei WU Yucheng +3 位作者 ZHANG Haibin ZHANG Xinfeng LI Canmin LIU Dongguang 《陶瓷学报》 北大核心 2025年第5期918-925,共8页
[Background and purposes]Proton exchange membrane fuel cells(PEMFCs),which convert hydrogen energy directly into electrical energy and water,have received overwhelming attention,owing to their potential to significant... [Background and purposes]Proton exchange membrane fuel cells(PEMFCs),which convert hydrogen energy directly into electrical energy and water,have received overwhelming attention,owing to their potential to significantly reduce energy consumption,pollution emissions and reliance on fossil fuels.Bipolar plates are the major part and key component of PEMFCs stack,which provide mechanical strength,collect and conduct current segregate oxidants and reduce agents.They contribute 70-80%weight and 20-30%cost of a whole stack,while significantly affecting the power density.There are three types plates,including metal bipolar plate,graphite bipolar plate and composite bipolar plate.Stainless steel bipolar plates,as one of metal bipolar plate,exhibit promising manufacturability,competitive cost and durability among various metal materials.However,stainless steel would be corroded in the harsh acid(pH 2-5)and humid PEMFCs environment,whereas the leached ions will contaminate the membrane.In addition,the passivated film formed on the surface will increase the interfacial contact resistance(ICR).In order to improve the corrosion resistance and electrical conductivity of steel bipolar plates,surface coatings are essential.Metal nitride coatings,metal carbide coatings,polymer coatings and carbon-based coatings have been introduced in recent years.Carbon-based coatings,mainly including a-C(amorphous Carbon),Ta-C(Tetrahedral amorphous carbon)and DLC(diamond-like carbon),have attracted considerable attention from both academia and industry,owing to their superior performance,such as chemical inertness,mechanical hardness and electrical conductivity.However,Ta-C films as protective coating of PEMFCs have been rarely reported,due to the difficulty in production for industrial application.In this paper,multi-layer Ta-C composite films were produced by using customized industrial-scale vacuum equipment to address those issues.[Methods]Multiple layered Ta-C coatings were prepared by using PIS624 equipment,which assembled filtered cathodic arc evaporation,ion beam and magnetron sputtering into one equipment,while SS304 and silicon specimens were used as substrate for testing and analysis.Adhesion layer and intermediate layer were deposited by using magnetron sputtering at deposition temperature of 150℃and pressure of 3×10^(−1) Pa,while the sputtering current was set to be 5 A and bias power to be 300 V.The Ta-C layer was coated at arc current of 80-100 A,bias voltage of 1500 V and gas flow of 75 sccm.A scanning electron microscope(CIQTEK SEM3200)was used to characterize surface morphology,coating structure and cross-section profile of the coatings.Raman spectrometer(LabRam HR Evolution,HORIBA JOBIN YVON)was used to identify the bonding valence states.Electrochemical tests were performed by using an electrochemical work station(CHI760,Shanghai Chenhua Instrument Co.,Ltd.),with the traditional three electrode system,where saturated Ag/AgCl and platinum mesh were used as the reference electrode and counter electrode,respectively.All samples were mounted in plastic tube and sealed with epoxy resin,with an exposure area of 2.25 cm^(2),serving as the working electrode.Electrochemical measurements were carried out in simulated PEMFCs cathode environment in 0.5 mol·L^(−1) H_(2)SO_(4)+5 ppm F−solution,at operating temperature of 70℃.As the cathode environment was harsher than the anode environment,all the samples are stabilized at the open-circuit potential(OCP)for approximately 30 min before the EIS measurements.ICR between bipolar plates and GDL was a key parameter affecting performance of the PEMFCs stack.The test sample sandwiched between 2 pieces of carbon paper(simulate gas diffusion layer,GDL)was placed between 2 gold-plated copper electrodes at a compaction pressure of 1.4 MPa,which was considered to be the conventional compaction pressure in the PEMFCs.Under the same conditions,the resistance of a single carbon paper was measured as well.The ICR was calculated according to the formula ICR=1/2(R2−R1)×S,where S was the contact area between GDL and coated stainless steel BPPs.All data of ICR were measured three times for averaging.[Results]The coatings deposited by filtered cathodic arc technology were compact and smooth,which reduced coating porosity and favorable to corrosion resistance.The coating thickness of adhesion and intermediate layers were 180 nm,while the protective Ta-C coating thickness was about 300 nm,forming multiple coating to provide stronger protection for metal bipolar plates.Cr,Ti,Nb and Ta coatings were selected as adhesion layers for comparison.According to electrochemical test,Ta and Nb coatings have higher corrosion resistance.However,Ta and Nb materials would be costly when they are used for mass production.Relatively,Cr and Ti materials were cost effective.Hence,a comprehensive assessment was indispensable to decide the materials to be selected as adhesion layer.Ta-TiN and Ti-TiN combined adhesion and intermediate layer exhibited stronger corrosion resistance,with the corrosion current to be less than 10^(−6) A·cm^(−2).Ta-C protective coating deposited by using filtered cathodic arc technology indicated displayed higher corrosion resistance,with the average corrosion density to be about 1.26×10^(−7) A·cm^(−2).Ta-C coating also shown larger contact angle,with the highest hydrophobicity,which was one of the important advantages for Ta-C,in terms of corrosion resistance.According to Raman spectroscopy,the I(D)/I(G)=549.8/1126.7=0.487,with the estimated fraction of sp^(3) bonding to be in the range of 5154%.The intermediate layer TiN has higher conductivity than the CrN layer.Considering cost,corrosion performance and ICR result,the Ti-TiN layer combination is recommended for industrial scale application.[Conclusions]Multiple layer coating structure of Ta-C film had stronger corrosion resistance;with more than 50%sp^(3) content,while it also had larger water contact angle and higher corrosion resistance than DLC film.The filtered arcing deposition technology was able to make the film to be more consistent and stable than normal arcing technology in terms of the preparation of Ta-C.The coating displayed corrosion density of 1.26×10^(−7) A·cm^(−2) and ICR of less than 5 mΩ·cm^(2),far beyond technical target of 2025 DOE(US Department of Energy).This indicated that the mass-production scale coating technology for PEMFC bipolar plates is highly possible. 展开更多
关键词 PEMFC stainless steel bipolar plates tetrahedral amorphous carbon(Ta-C)films corrosion resistance interfacial contact resistance multiple layers coating
在线阅读 下载PDF
Determining the parameters and chemical behaviour of the overdriven detonation reaction zone of CL-20-based aluminized explosives
20
作者 Moyan Liu Yan Liu +3 位作者 Fan Bai Hongfu Wang Shanyong Chu Fenglei Huang 《Defence Technology(防务技术)》 2025年第5期46-66,共21页
The new CL-20(hexanitrohexaazaisowurtzitane)type aluminized explosives in the overdrive detonation(ODD)conditions of the core problem is how to accurately represent the state of the overdrive detonation products.To th... The new CL-20(hexanitrohexaazaisowurtzitane)type aluminized explosives in the overdrive detonation(ODD)conditions of the core problem is how to accurately represent the state of the overdrive detonation products.To this end,this paper is based on the impedance matching method to test the ODD conditions of CL-20 type aluminium explosive particle velocity.Calculated the interfacial pressure of the shock wave in different media.Determined the characteristic parameters of the reaction zone of the detonation of CL-20 aluminized explosives.Calibrated the parameters of the JoneseWilkinseLee(JWL)+γ equation for the detonation products(DPs).Revealed the effect of different DPs equation of state(EOS)on the Hugoniot pressure of ODD.The results indicate that when the content of aluminum powder ranges from 0%to 30%,the duration of the ODD reaction zone and the width of the detonation reaction zone of the CL-20-based aluminized explosive are directly proportional to the content of aluminum powder.The width of the detonation reaction zone is increased by 1.97 times to 2.7 times compared to that of the reaction zone without the addition of aluminum powder.However,the energy release efficiency of the detonation reaction zone is inversely proportional to the content of aluminum powder.When the aluminum powder content was held constant,the incorporation of AP caused a 25%reduction in the energy release efficiency of the detonation reaction zone.Compared with existing ODD state equations,the JWL +γ equation is superior in calibrating overpressure Hugoniot data and the isentropic expansion in the C-J state.The deviation between calculated pressure results and experimental measurements is within 6%. 展开更多
关键词 Equation of state for ODD CL-20-based aluminized explosives Detonation reaction zone Impedance matching interfacial particle velocity
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部