期刊文献+
共找到2,468篇文章
< 1 2 124 >
每页显示 20 50 100
Research on fracture characteristics and support mechanism of shallow buried double-soft composite roof
1
作者 ZHANG Wei ZHANG Chun-wang +2 位作者 GUO Wei-yao ZHANG Bao-liang LIU Wan-rong 《Journal of Central South University》 2025年第5期1838-1854,共17页
Affected by the geological characteristics of coal bearing strata in western mining areas of China,the double soft composite roof has low strength and poor integrity,which is prone to induce disasters such as large de... Affected by the geological characteristics of coal bearing strata in western mining areas of China,the double soft composite roof has low strength and poor integrity,which is prone to induce disasters such as large deformation and roof collapse.Four-point bending tests were conducted on anchored double-layer rock beams with different pre tightening force and upper/lower rock strength ratios(Ⅰ/Ⅱ)based on the digital speckle correlation method(DSCM).The research results indicate that the instability process of anchored roof can be divided into stages of elastic deformation,crack propagation,alternating fracture,and failure collapse.The proportion of crack propagation and alternating fracture processes increased with the increase of pre-tightening force and Ⅰ/Ⅱ.The pre-tightening force can suppress the sliding of the upper/lower rock interface,and delay the initiation and propagation of cracks.As Ⅰ/Ⅱ increases,the failure mode changes from tensile failure steel strip to shear failure anchor rod.Steel strip can improve the continued bearing effect of anchored roof during crack propagation and alternating fracture processes. 展开更多
关键词 double-soft composite roof anchored composite beams anchored rock fracture pre-tightening force crack propagation
在线阅读 下载PDF
Pressure transient analysis of a finite-conductivity multiple fractured horizontal well in linear composite gas reservoirs 被引量:1
2
作者 REN Jun-jie GAO Yang-yang +2 位作者 ZHENG Qiao GUO Ping WANG De-long 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期780-796,共17页
Faulted gas reservoirs are very common in reality,where some linear leaky faults divide the gas reservoir into several reservoir regions with distinct physical properties.This kind of gas reservoirs is also known as l... Faulted gas reservoirs are very common in reality,where some linear leaky faults divide the gas reservoir into several reservoir regions with distinct physical properties.This kind of gas reservoirs is also known as linear composite(LC)gas reservoirs.Although some analytical/semi-analytical models have been proposed to investigate pressure behaviors of producing wells in LC reservoirs based on the linear composite ideas,almost all of them focus on vertical wells and studies on multiple fractured horizontal wells are rare.After the pressure wave arrives at the leaky fault,pressure behaviors of multiple fractured horizontal wells will be affected by the leaky faults.Understanding the effect of leaky faults on pressure behaviors of multiple fractured horizontal wells is critical to the development design.Therefore,a semi-analytical model of finite-conductivity multiple fractured horizontal(FCMFH)wells in LC gas reservoirs is established based on Laplace-space superposition principle and fracture discrete method.The proposed model is validated against commercial numerical simulator.Type curves are obtained to study pressure characteristics and identify flow regimes.The effects of some parameters on type curves are discussed.The proposed model will have a profound effect on developing analytical/semi-analytical models for other complex well types in LC gas reservoirs. 展开更多
关键词 semi-analytical model linear composite gas reservoir multiple fractured horizontal well finite-conductivity hydraulic fracture pressure behavior
在线阅读 下载PDF
Numerical Simulation of Particle/Matrix Interface Failure in Composite Propellant 被引量:7
3
作者 常武军 鞠玉涛 +2 位作者 韩波 胡少青 王政时 《Defence Technology(防务技术)》 SCIE EI CAS 2012年第3期146-153,共8页
Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its mi... Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its microscopic computational model was established. The interface mechanical response was modeled by the bilinear cohesive zone model. The effects of interface properties and particle sizes on the macroscopic mechanical behavior were investigated. Numerical simulation of debonding damage evolution of composite propellant under finite deformation was carried out. The debonding damage nucleation, propagation mechanism and non-uniform distribution of microscopic stress-strain fields were discussed. The results show that the finite element simulation method based on microstructure model can effectively predict the trend of macroscopic mechanical behavior and particle/matrix debonding evolution process. It can be used for damage simulation and failure assessment of composite propellants. 展开更多
关键词 propulsion system of aviation and aerospace interface debonding cohesive zone model composite propellant cohesive element damage evolution
在线阅读 下载PDF
Effects of interface slip and semi-rigid joint on elastic seismic response of steel-concrete composite frames 被引量:5
4
作者 戚菁菁 蒋丽忠 《Journal of Central South University》 SCIE EI CAS 2010年第6期1327-1335,共9页
The stiffness matrix of semi-rigidly connected composite beams considering interface slip was established and the calculation method for elastic seismic response of composite frame was derived.The corresponding calcul... The stiffness matrix of semi-rigidly connected composite beams considering interface slip was established and the calculation method for elastic seismic response of composite frame was derived.The corresponding calculation programs were developed.Introducing the dimensionless quantities that were related to the connector shearing stiffness and the joint rotation stiffness,the influences of interface slip and semi-rigid joint on composite frame were transferred to quantitative parameter analysis,taking account of cross sectional properties,materials and linear stiffness of composite beam synthetically.Based on the calculation programs,free vibration frequencies and seismic responses of semi-rigid joint steel-concrete composite frame considering interface slip were calculated.The influences of interface slip and semi rigid joint on dynamic characteristics and seismic response were analyzed and the seismic design advices were presented.The results show that the interface slip decreases the free vibration frequencies and increase the seismic responses of composite frame.The semi-rigid joint reduces the free vibration frequencies and increases seismic responses of composite frame compared with rigid joint.With the increase of joint rotational stiffness,the elastic seismic responses of composite frame increase firstly and then decrease.The effects are related to the ratio of joint rotation stiffness to linear stiffness of composite beam. 展开更多
关键词 composite frame interface slip semi-rigid joint dynamic characteristic shearing stiffness rotation stiffness seismicresponse
在线阅读 下载PDF
INFLUENCE OF INTERFACIAL STRENGTH ON THE FRACTURE TOUGHNESS OF GLASS-CERAMIC MATRIX COMPOSITEST
5
作者 Wang Lingsen Liu Ruoyu +1 位作者 Zang Jinsen Fan Yi(PowderMetallurgy Research institute, Central South University ofTechnology, Changsha 410083, China) 《Journal of Central South University》 SCIE EI CAS 1997年第1期1-4,共4页
Nine kinds of glass-ceramic matrix composites with different compositions and inter facial strength(L) were prepared. The influence of Ti on the fracture toughness (K1c.) of composites was studied. It was discoved tha... Nine kinds of glass-ceramic matrix composites with different compositions and inter facial strength(L) were prepared. The influence of Ti on the fracture toughness (K1c.) of composites was studied. It was discoved that, for the system no chemical reaction taking place at the interface, K1c. increased proportionallywith ts increasing at the first stage, then decreased when ts reached a certain value. According to this result,a model of relationship between L, thermal mismatch (Δαr) and K1c was built up. If a chemical reaction tookplace and a new phase was formed in the interface, the K1c. of composite was effected by the combination ofrs, chemical bonding, radial inter facial stress and other factors. 展开更多
关键词 composite INTERFACIAL STRENGTH fracture TOUGHNESS
在线阅读 下载PDF
Microstructure and mechanical properties of novel SiC-TiC/Al-Mg-Sc-Zr composites prepared by selective laser melting
6
作者 LU Ren-yi MA Guo-nan +4 位作者 BAI Guan-shun ZHAO Wen-tian ZHANG Hui-hua ZHAO Shu-ming ZHUANG Xin-peng 《Journal of Central South University》 2025年第5期1641-1659,共19页
In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm alum... In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm aluminum alloy powders by low-speed ball milling and mechanical mixing technology,respectively.Then,the effects of laser energy density,power and scanning rate on the density of the composites were investigated based on selective laser melting(SLM)technology.The effect of micron-sized SiC and nano-sized TiC particles on solidification structure,mechanical properties and fracture behaviors of the composites was revealed and analyzed in detail.Interfacial reaction and phase variations in the composites with varying reinforced particles were emphatically considered.Results showed that SiC-TiC particles could significantly improve forming quality and density of the SLMed composites,and the optimal relative density was up to 100%.In the process of laser melting,a strong chemical reaction occurs between SiC and aluminum matrix,and micron-scale acicular Al_(4)SiC_(4) bands were formed in situ.There was no interfacial reaction between TiC particles and aluminum matrix.TiC/Al semi-coherent interface had good bonding strength.Pinning effect of TiC particles in grain boundaries could prevent the equiaxial crystals from growing and transforming into columnar crystals,resulting in grain refinement.The optimal ultimate tensile strength(UTS),yield strength(YS),elongation(EL)and elastic modulus of the SiC-TiC/Al-Mg-Sc-Zr composite were~394 MPa,~262 MPa,~8.2%and~86 GPa,respectively.The fracture behavior of the composites included ductile fracture of Al matrix and brittle cleavage fracture of Al_(4)SiC_(4) phases.A large number of cross-distributed acicular Al_(4)SiC_(4) bands were the main factors leading to premature failure and fracture of SiC-TiC/Al-Mg-Sc-Zr composites. 展开更多
关键词 selective laser melting interface structure aluminum matrix composite mechanical properties elastic modulus
在线阅读 下载PDF
2D Plain and 3D Needle-punched C/SiC Composites:Low-velocity Impact Damage Behavior and Failure Mechanism
7
作者 LUAN Xingang HE Dianwei +1 位作者 TU Jianyong CHENG Laifei 《无机材料学报》 北大核心 2025年第2期205-214,I0004,共11页
Continuous carbon fiber reinforced silicon carbide(C/SiC)composites are often subjected to low-velocity impacts when utilized as structural materials for thermal protection.However,research on in-plane impact damage a... Continuous carbon fiber reinforced silicon carbide(C/SiC)composites are often subjected to low-velocity impacts when utilized as structural materials for thermal protection.However,research on in-plane impact damage and multiple impact damage of C/SiC composites is limited.To investigate the in-plane impact damage behavior of C/SiC composites,a drop-weight impact test method was developed for strip samples,and these results were subsequently compared with those of C/SiC composite plates.Results show that the in-plane impact behavior of C/SiC strip samples is similar to that of C/SiC composite plates.Variation of the impact load with displacement is characterized by three stages:a nearly linear stage,a severe load drop stage,and a rebound stage where displacement occurs after the impact energy exceeds its peak value.Impact damage behavior under single and multiple impacts on 2D plain and 3D needled C/SiC composites was investigated at different impact energies and durations.Crack propagation in C/SiC composites was studied by computerized tomography(CT)technique.In the 2D plain C/SiC composite,load propagation between layers is hindered during impact,leading to delamination and 90°fiber brittle fracture.The crack length perpendicular to the impact direction increases with impact energy increases,resulting in more serious 0°fiber fracture and a larger area of fiber loss.In the 3D needled C/SiC composite,load propagates between the layers during impact through the connection of needled fibers.The fibers continue to provide substantial structural support,with notable instances of fiber pull-off and debonding.Consequently,the impact resistance is superior to that of 2D plain C/SiC composite.When the 3D needled C/SiC composite undergoes two successive impacts of 1.5 J,the energy absorption efficiency of the second impact is significantly lower,accompanied by a smaller impact displacement.Moreover,the total energy absorption efficiency of these two impacts of 1.5 J is lower than that of a single 3.0 J impact. 展开更多
关键词 ceramic-matrix composite fracture low-velocity impact computerized tomography analysis
在线阅读 下载PDF
Failure behavior of rock and steel slag cemented paste backfill composite structures under uniaxial compression:Effects of interface angle and steel slag content
8
作者 HAO Jian-shuai ZHOU Zi-han +1 位作者 CHEN Zhong-hui CHE Zeng-hui 《Journal of Central South University》 2025年第7期2679-2695,共17页
The stability of the“surrounding rock-backfill”com posite system is crucial for the safety of mining stopes.This study systematically investigates the effects of steel slag(SS)content and interface angle on the stre... The stability of the“surrounding rock-backfill”com posite system is crucial for the safety of mining stopes.This study systematically investigates the effects of steel slag(SS)content and interface angle on the strength and failure characteristics of rock and SS-cemented paste backfill composite specimens(RBCS)through uniaxial compression strength tests(UCS),acoustic emission systems(AE),and 3 D digital image correlation monitoring technology(3 D-DIC).The intrinsic mechanism by which SS content influences the strength of SS-CPB was revealed through an analysis of its hydration reaction degree and microstructural characteristics under varying SS content.Moreover,a theoretical strength model incorporating different interface angles was developed to explore the impact of interface inclination on failure modes and mechanical strength.The main conclusions are as follows:The incorporation of SS enhances the plastic characteristics of RBCS and reduces its brittleness,with the increase of SS content,the stress-strain curve of RBCS in the“staircase-like”stag e becomes smoother;When the interface angle is 45°,the RBCS stress-strain curve exhibits a bimodal feature,and the failure mode changes from Y-shaped fractures to interface and axial splitting;The addition of SS results in a reduction of hydration products such as Ca(OH)_(2) in the backfill cementing system and an increase in harmful pores,which weakens the bonding performance and strength of RBCS,and the SS content should not exceed 45%;As the interface angle increases,the strength of RBCS decreases,and the critical interface slip angle decreases first and then increases with the increase in the E S/E R ratio.This study provides technical references for the large-scale application of SS in mine backfill. 展开更多
关键词 steel slag-cemented paste backfill interface angle rock-backfill composite structures failure mode
在线阅读 下载PDF
Experimental research on electromagnetic continuous casting high-speed steel composite roll 被引量:5
9
作者 李国军 冯明杰 《Journal of Central South University》 SCIE EI CAS 2014年第3期849-856,共8页
A high speed steel composite roll billet was fabricated, which is regular in shape, smooth in surface, slight in trace, compact in internal structure, free of slag inclusion, shrinkage cavity, cracks and other flaws, ... A high speed steel composite roll billet was fabricated, which is regular in shape, smooth in surface, slight in trace, compact in internal structure, free of slag inclusion, shrinkage cavity, cracks and other flaws, and good in macro quality of junction surface using a vertical continuous casting machine. The interface zone microstructure of bimetallic in billet of high speed steel composite roll was analyzed by metallurgical microscope(OM), X-ray diffractmeter(XRD), scanning electron microscopy(SEM) and energy-dispersive X-ray analysis(EDS). The results indicate that the microstructure of roll billet is composed of chilled solidified layer, dendrite zone, interfacial zone of bimetal and core material zone. The microstructure of outer shell material is composed of martensite + bainite + residual austenite + some small labyrinth-shape, small-short lath-shape, or dollop-shape eutectic carbides. The microstructure of core material is slice-shape pearlite and a little ferrite along boundary of cells. The interface region microstructure of bimetallic composite roll consists of diffusion region, chilled solidified layer and columnar grain region. 展开更多
关键词 high speed steel composite roll continuous casting interface of bimetal composite CARBIDE
在线阅读 下载PDF
Bonding mechanism of X10CrNi18-8 with Ni/Al_2O_3 composite ceramic by pressureless infiltration 被引量:7
10
作者 杨少锋 陈维平 +2 位作者 韩孟岩 杨超 朱德智 《Journal of Central South University》 SCIE EI CAS 2011年第4期953-959,共7页
Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 6... Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 600 ℃. The infiltration quality and interfacial bonding behavior were investigated by SEM, EDS, XRD and tensile tests. The results show that there is an obvious interfacial reaction layer between the alloying steel and the Ni/Al2O3 composite ceramic. The interfacial reactive products are (FexAly)3O4 intermetallic phase and (AlxCry)2O3 solid solution. The interracial bonding strength is as high as about 67.5 MPa. The bonding mechanism of X10CrNi 18-8 steel with the composite ceramic is that Ni inside the ceramic bodies dissolves into the alloy melt and transforms into liquid channels, consequently inducing the steel melt infiltrating and filling in the pores and the liquid channels. Moreover, the metallurgical bonding and interfacial reactive bonding also play a key role on the stability of the bonding interface. 展开更多
关键词 pressureless infiltration steel/alumina composites interface bonding infiltration mechanism
在线阅读 下载PDF
Reliability analysis of laminated composite under compression and shear loads 被引量:1
11
作者 王富生 张钧然 +2 位作者 王佩艳 霍世慧 岳珠峰 《Journal of Central South University》 SCIE EI CAS 2012年第10期2712-2717,共6页
Carrying on a series of compression and shear tests by a large number of specimens, reliabilities of T300/QY8911 laminated composite were studied when dispersibility models were described. The results show that the st... Carrying on a series of compression and shear tests by a large number of specimens, reliabilities of T300/QY8911 laminated composite were studied when dispersibility models were described. The results show that the stress is linearly dependent on the strain and the damage modes of specimens are brittle fracture for both kinds of tests. Dispersibility models of compression and shear strength are expressed as Re-N(415.39, 6 586.36) and Rs-ln(5.071 8, 0.155 3), respectively. When normal and lognormal distributions were used to describe the dispersibility models of compression and shear strength, and the compression or shear load follows the normal distribution, the almost same failure probability can be obtained from different reliability analysis methods. 展开更多
关键词 laminated composite dispersibility model reliability analysis compression SHEAR brittle fracture failure probability
在线阅读 下载PDF
Influence of construction interfaces on dynamic characteristics of roller compacted concrete dams 被引量:3
12
作者 GU Chong-shi WANG Shao-wei BAO Teng-fei 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1521-1535,共15页
To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring art... To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring artificial boundary(VSAB) is adopted to simulate the radiation damping of their infinite foundations, and based on the Marc software, a simplified seismic motion input method is presented by the equivalent nodal loads. Finally, based on the practical engineering of a RCC gravity dam, effects of radiation damping and construction interfaces on the dynamic characteristics of dams are investigated in detail. Analysis results show that dynamic response of the RCC gravity dam significantly reduces about 25% when the radiation damping of infinite foundation is considered. Hot interfaces and the normal cold interfaces have little influence on the dynamic response of the RCC gravity dam.However, nonlinear fracture along the cold interfaces at the dam heel will occur under the designed earthquake if the cold interfaces are combined poorly. Therefore, to avoid the fractures along the construction interfaces under the potential super earthquakes,combination quality of the RCC layers should be significantly ensured. 展开更多
关键词 roller compacted concrete dam construction interface nonlinear fracture radiation damping viscous-spring artificial boundary dynamic response
在线阅读 下载PDF
Fatigue properties of special kind of reinforced concrete composite beams
13
作者 胡铁明 黄承逵 陈小锋 《Journal of Central South University》 SCIE EI CAS 2010年第1期142-149,共8页
The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interfa... The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam. 展开更多
关键词 steel fiber reinforced self-stressing concrete composite beam constructional bar bonding interface FATIGUE
在线阅读 下载PDF
Research on the fracture behavior of PBX under static tension 被引量:11
14
作者 Hu GUO Jing-run LUO +1 位作者 Ping-an SHI Jian-guo XU 《Defence Technology(防务技术)》 SCIE EI CAS 2014年第2期154-160,共7页
The fracture behavior of polymer-bonded explosive(PBX) seriously affects the safety and reliability of weapon system.The effects of interface debonding and initial meso-damage on the fracture behavior of PBX under qua... The fracture behavior of polymer-bonded explosive(PBX) seriously affects the safety and reliability of weapon system.The effects of interface debonding and initial meso-damage on the fracture behavior of PBX under quasi-static tension are studied using numerical method.A twodimensional representative volume element(RVE) is established based on Voronoi model in which the component contents could be regulated and the particles are randomly distributed.A nonlinear damage model of polymer matrix relative to matrix depth between particles is constructed.The results show that the simulated strain-stress relation is coincident with experiment data.It is found that interface debonding leads to the nucleation and propagation of meso-cracks,and a main crack approximately perpendicular to the loading direction is generated finally.The interface debonding tends to occur in the interface perpendicular to the loading direction.There seems to be a phenomenon that strain softening and hardening alternatively appear around peak stress of stress and strain curve.It is shown that the initial damages of intragranular and interfacial cracks both decrease the modulus and failure stress,and the main crack tends to propagate toward the initial meso-cracks. 展开更多
关键词 拉伸断裂行为 PBX 准静态 界面裂纹 损伤模型 峰值应力 裂纹传播 武器系统
在线阅读 下载PDF
Functionally graded Al_2O_3-ZrO_2 composite prepared by centrifugal slip casting and its mechanical properties
15
作者 HAYAKAWA Motozo HARA Yasuyuki +1 位作者 LI Xiao-dong ONDA Tetsuhiko 《材料与冶金学报》 CAS 2006年第4期296-299,共4页
Compositionally graded composite of alumina-20%zirconia (volume fraction) was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the... Compositionally graded composite of alumina-20%zirconia (volume fraction) was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the alumina/zirconia ratio along the centrifugal direction; zirconia tended to accumulate in the bottom section, while alumina in the top section. Such a graded structure exhibited a considerably higher flexural strength when the alumina rich surface was subjected to a tensile stress than compositionally uniform composite of the same average composition. Fracture toughness measurement across the specimen thickness by indentation method revealed that the crack lengths along the vertical and horizontal directions were different. The anisotropy of the fracture toughness was accounted for by the variation of the residual stress across the specimen thickness. 展开更多
关键词 AL2O3-ZRO2 复合材料 离心滑动铸件 弯曲强度
在线阅读 下载PDF
Effects of alloying elements M(Mn,Cr,Mo,Ni,Cu,and Si)on interface behavior of TiC(002)/Fe(011)
16
作者 LI Jia-xin HOU Guang-xin +3 位作者 JIA Peng HU Li-hua WANG Li-quan WANG Xiang 《Journal of Central South University》 2025年第8期2795-2808,共14页
Improving interfacial bonding and alloying design are effective strategies for enhancing mechanical properties of particle-reinforced steel matrix composites(SMCs).This study prepared SMCs with uniformly distributed T... Improving interfacial bonding and alloying design are effective strategies for enhancing mechanical properties of particle-reinforced steel matrix composites(SMCs).This study prepared SMCs with uniformly distributed TiC_(P) in matrix using master alloying method.The TiC(002)/Fe(011)interface model was established based on the orientation relationship of(011)_(Fe)//(002)_(TiC),and[100]_(Fe)//[100]_(TiC).The effects of single and co-doping of alloying elements(Mn,Cr,Mo,Ni,Cu and Si)on the interface bonding behavior of TiC/Fe in composites were investigated in conjunction with first principles.The results demonstrate that the interface between TiC and matrix is continuous and stable.Compared to the undoped TiC/Fe interface,single-doping Mn,Cr,and Mo can improve the stability of TiC/Fe interface and enhance tensile strength.Conversely,single-doping with Ni,Cu,and Si reduced the interface stability and marginally reduces tensile strength.Relative to the undoped and singly Ni-doped TiC/Fe interfaces,the co-doping Ni-Mo boosts binding energy and separation work at the TiC/Fe interface,which is conducive to the interface bonding between TiC_(P) and matrix,and thus improves the mechanical properties of composites.Thus,in the alloying design of TiC particle reinforced low-alloy SMCs,incorporating Mn,Cr,Mo,and Ni into matrix can enhance the overall mechanical properties of composites. 展开更多
关键词 TiC particle-reinforced steel matrix composites alloying elements first-principles interface behavior co-doping
在线阅读 下载PDF
C/SiC复合材料微观结构及其纳米力学性能
17
作者 袁建宇 谢国君 +3 位作者 房金铭 逄锦程 韩露 卢鹉 《宇航材料工艺》 北大核心 2025年第4期95-102,共8页
C/Si C复合材料是一种包括C纤维、Si C基体以及二者间热解碳界面层的多相材料,本文对纤维、基体和界面的微观结构及纳米力学性能进行了分析和测试,从而与宏观力学性能测试结果形成互补。采用光学显微镜(OM)、扫描电镜(SEM)、能谱分析仪(... C/Si C复合材料是一种包括C纤维、Si C基体以及二者间热解碳界面层的多相材料,本文对纤维、基体和界面的微观结构及纳米力学性能进行了分析和测试,从而与宏观力学性能测试结果形成互补。采用光学显微镜(OM)、扫描电镜(SEM)、能谱分析仪(EDS)等手段对C/Si C复合材料截面精细化结构进行了表征,并采用纳米压痕技术对典型代表区域的硬度和折合模量进行了测试。结果发现:C/Si C复合材料中的C纤维呈“皮芯”结构,其直径约为7μm,表皮1.5μm范围内的环状区域硬度为(5.45±0.28) GPa,折合模量为(33.1±1.4) GPa;芯部区域硬度为(6.85±0.21) GPa,折合模量为(33.8±0.34) GPa。Si C基体包括三种形态:纤维布层间分布的大块基体;大块基体周围分布的小块基体;在单个纤维束内、不同纤维丝间分布的细小基体。由于上述三类基体经历的高温裂解环境不同,因此在硬度和折合模量上均存在明显差异,硬度分别为(34.8±2.64)、(23.6±2.27)以及(21.3±1.81) GPa,折合模量分别为(210±19.7)、(165±8.58)、(124±10.8) GPa。C纤维和Si C基体之间的界面层厚度约为0.3μm,力学性能测试方差较大,介于纤维和基体之间,起到了性能过渡的作用,其硬度为(13.6±3.03)GPa,折合模量为(99.3±13.0) GPa。 展开更多
关键词 C/SIC复合材料 纤维 基体 界面 硬度 折合模量
在线阅读 下载PDF
非常规储层燃爆-水力复合压裂裂缝扩展数值模拟
18
作者 郭天魁 王海洋 +4 位作者 陈铭 曲占庆 戴彩丽 翟成 王继伟 《石油勘探与开发》 北大核心 2025年第4期898-906,918,共10页
采用连续-非连续单元法,建立考虑燃爆应力冲击造缝、燃爆气体扩缝与水力压裂扩缝的燃爆-水力复合压裂裂缝扩展数值模拟方法,探究地应力差、燃爆峰值压力、燃爆增压速率、水力压裂排量、水力压裂液黏度对复合压裂裂缝扩展的影响规律。研... 采用连续-非连续单元法,建立考虑燃爆应力冲击造缝、燃爆气体扩缝与水力压裂扩缝的燃爆-水力复合压裂裂缝扩展数值模拟方法,探究地应力差、燃爆峰值压力、燃爆增压速率、水力压裂排量、水力压裂液黏度对复合压裂裂缝扩展的影响规律。研究表明:燃爆-水力复合压裂结合了燃爆压裂近井造缝复杂和水力压裂远井深穿透的优势,可形成多条深穿透的长裂缝,改造效果更好。增大地应力差,将减少燃爆-水力复合压裂改造面积,燃爆-水力复合压裂更适合地应力差较小的储层;高燃爆压裂峰值压力、高燃爆压裂增压速率均有利于增加燃爆裂缝的最大破裂长度与破裂度,进而增加燃爆-水力复合压裂的改造面积,提高改造效果;提高水力压裂排量、压裂液黏度将提升缝内净压力,激活燃爆裂缝,增大裂缝转向半径,产生更多的长裂缝,有效增大储层改造面积;储层改造面积与水力压裂排量、水力压裂液黏度并非完全正相关,存在临界值,当超过临界值后,改造面积减小。 展开更多
关键词 连续-非连续单元法 燃爆压裂 燃爆-水力复合压裂 裂缝扩展 改造效果
在线阅读 下载PDF
含初始损伤饱水花岗岩的冲击破坏规律
19
作者 褚怀保 陈璐阳 +3 位作者 杨小林 王东辉 魏海霞 孙博 《爆炸与冲击》 EI CAS 北大核心 2025年第1期51-64,共14页
为研究饱水和初始损伤对冲击荷载下花岗岩宏观和微观破坏特征的影响,开展了X射线衍射、霍普金森和扫描电镜试验,利用分形维数对花岗岩的破碎块度和断口形貌进行了分析,探讨了图像放大倍数对分形维数的影响,分析了冲击荷载下饱水后花岗... 为研究饱水和初始损伤对冲击荷载下花岗岩宏观和微观破坏特征的影响,开展了X射线衍射、霍普金森和扫描电镜试验,利用分形维数对花岗岩的破碎块度和断口形貌进行了分析,探讨了图像放大倍数对分形维数的影响,分析了冲击荷载下饱水后花岗岩的微观致裂机制。结果表明:饱水后花岗岩中角闪石、钠长石、微斜长石和石英的占比减少,高岭石占比显著提高;随着初始损伤的增大,花岗岩的动态峰值应力逐渐减小,而破碎程度和块度分形维数逐渐增大,且初始损伤对块度分形维数的影响大于饱水的影响;随着初始损伤的增加,断口出现更多的微裂纹和碎屑,断口图像的分形维数也逐渐增加;放大倍数在400~3200范围内时,断口图像分形维数随着图像放大倍数的增大而增加,超过3200后,分形维数减小。 展开更多
关键词 岩石动力学 矿物成分 破碎块度 断口微观形貌 分形维数
在线阅读 下载PDF
退火温度对TA1/TC4波纹轧复合板力学性能及微观组织的影响
20
作者 张鹏 宁少波 +4 位作者 王涛 任忠凯 赵浩 刘文文 郭继保 《塑性工程学报》 北大核心 2025年第2期194-202,共9页
对波纹轧制工艺制备得到的TA1/TC4复合板进行轧后退火研究,通过拉伸、拉剪测试以及界面微观组织表征,研究了退火温度对波纹热轧TA1/TC4复合板变形失效行为的作用机制。结果表明,低温退火(350~450℃)时,复合板基材的静态回复程度较低,复... 对波纹轧制工艺制备得到的TA1/TC4复合板进行轧后退火研究,通过拉伸、拉剪测试以及界面微观组织表征,研究了退火温度对波纹热轧TA1/TC4复合板变形失效行为的作用机制。结果表明,低温退火(350~450℃)时,复合板基材的静态回复程度较低,复合板内部的加工硬化现象仍较明显,导致复合板韧塑性能力提升不明显,随着退火温度的升高,复合板塑性改善明显。当退火温度高于500℃时,复合板的拉伸和剪切性能下降明显,对复合板的综合力学性能存在不利影响。力学性能测试结果表明,在500℃,1 h的退火条件下,复合板的综合力学性能最佳,此时屈服强度为802.3 MPa,剪切强度为366.54 MPa,伸长率接近10.5%。 展开更多
关键词 波纹轧制 TA1/TC4复合板 退火温度 力学性能 界面微观组织
在线阅读 下载PDF
上一页 1 2 124 下一页 到第
使用帮助 返回顶部