期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
In situ formed LiF-Li_(3)N interface layer enables ultra-stable sulfide electrolyte-based all-solid-state lithium batteries 被引量:2
1
作者 Ming Wu Mengqi Li +5 位作者 Yuming Jin Xinshuang Chang Xiaolei Zhao Zhi Gu Gaozhan Liu Xiayin Yao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期272-278,共7页
Sulfide solid electrolytes are promising for high energy density and safety in all-solid-state batteries due to their high ionic conductivity and good mechanical properties.However,the application of sulfide solid ele... Sulfide solid electrolytes are promising for high energy density and safety in all-solid-state batteries due to their high ionic conductivity and good mechanical properties.However,the application of sulfide solid electrolytes in all-solid-state batteries with lithium anode is restricted by the side reactions at lithium/electrolytes interfaces and the growth of lithium dendrite caused by nonuniform lithium deposition.Herein,a homogeneous LiF-Li_(3)N composite protective layer is in situ formed via a manipulated reaction of pentafluorobenzamide with Li metal.The LiF-Li_(3)N layer with both high interfacial energy and interfacial adhesion energy can synergistically suppress side reactions and inhibit the growth of lithium dendrite,achieving uniform deposition of lithium.The critical current densities of Li_(10)GeP_(2)S_(12)and Li_(6)PS_(5)Cl are increased to 3.25 and 1.25 mA cm^(-2)with Li@LiF-Li_(3)N layer,which are almost triple and twice as those of Li-symmetric cells in the absence of protection layer,respectively.Moreover,the Li@LiF-Li_(3)N/Li10GeP2S12/Li@LiF-Li_(3)N cell can stably cycle for 9000 h at 0.1 mA cm^(-2)under 0.1 mA h cm^(-2),and Li@LiF-Li_(3)N/Li_(6)PS_(5)Cl/Li@LiF-Li_(3)N cell achieves stable Li plating/stripping for 8000 h at 0.1 mA cm^(-2)under10 m A h cm^(-2).The improved dynamic stability of lithium plating/stripping in Li@LiF-Li_(3)N/Li_(10)GeP_(2)S_(12)or Li_(6)PS_(5)Cl interfaces is proved by three-electrode cells.As a result,LiCoO_(2)/electrolytes/Li@LiF-Li_(3)N batteries with Li_(10)GeP_(2)S_(12)and Li_(6)PS_(5)Cl exhibit remarkable cycling stability of 500 cycles with capacity retentions of 93.5%and 89.2%at 1 C,respectively. 展开更多
关键词 LiF-Li_(3)N Sulfide solid electrolytes interface modification High interface energy All-solid-state batteries
在线阅读 下载PDF
Dendritic tip selection during solidification of alloys:Insights from phase-field simulations
2
作者 Qingjie Zhang Hui Xing +1 位作者 Lingjie Wang Wei Zhai 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期467-472,共6页
The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary al... The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary alloys.It was found that the tip radius r increases and the tip shape amplitude coefficient A4 decreases with the increase of the fitting range for all cases.The dendrite tip shape selection parameter sdecreases and then stabilizes with the increase of the fitting range,and sincreases with the increase of e4.The relationship between sand e4 follows a power-law function sµea 4,and a is independent of DT but dependent on the fitting range.Numerical results demonstrate that the predicted sis consistent with the curve of microscopic solvability theory(MST)for e4<0.02,and sobtained from our phase-field simulations is sensitive to the undercooling when e4 is fixed. 展开更多
关键词 phase-field simulations dendritic structure interface energy anisotropy tip shape selection parameter
在线阅读 下载PDF
Surface Characterization and in Vitro Blood Compatibility of Poly (Ethylene Terephthalate) Immobilized with Hirudin
3
作者 李方 王进 +1 位作者 孙鸿 黄楠 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第2期235-239,共5页
Poly (ethylene terephthalate)(dacron, PET) films were exposed under argon plasma glow discharge with different glows and induced polymerization of acrylic acid(AA) in order to in- troduce carboxylic acid group o... Poly (ethylene terephthalate)(dacron, PET) films were exposed under argon plasma glow discharge with different glows and induced polymerization of acrylic acid(AA) in order to in- troduce carboxylic acid group onto PET (PET-AA) assisted by ultraviolet radiation(UV). Hirudin- immobilized PET (PET-HRD) films were prepared by the grafting of PET-AA, followed by chem- ical reaction with hirudin. The surface structure of the treated PET was determined by X-ray photoelectron spectroscopy (XPS). The wettability, surface free energy, and interface free energy of the films were investigated by contact angle measurement. The blood compatibility of the films was assessed by platelet-adhesion test and fibrinogen conformational change measurements to eval- uate the viability of the materials in biomedical engineering. Measurement by scanning electron microscopy (SEM) revealed that the amounts of adhered, aggregated and morphologically changed platelets were reduced on the hirudin-immobilized PET films. Enzyme-linked-immunoassay mea- surements that disclosed fibrinogen conformational changes showed results consistent with the platelets' behavior. 展开更多
关键词 HIRUDIN blood compatibility poly (ethylene terephthalate) interface energy surface energy
在线阅读 下载PDF
Theoretical analysis of droplet transition from Cassie to Wenzel state 被引量:1
4
作者 刘天庆 李艳杰 +1 位作者 李香琴 孙玮 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期367-378,共12页
Whether droplets transit from the Cassie to the Wenzel state (C-W) on a textured surface is the touchstone that the superhydrophobicity of the surface is still maintained. However, the C-W transition mechanism, espe... Whether droplets transit from the Cassie to the Wenzel state (C-W) on a textured surface is the touchstone that the superhydrophobicity of the surface is still maintained. However, the C-W transition mechanism, especially the spontaneous transition of small droplets, is still not very clear to date. The interface free energy gradient of a small droplet is firstly proposed and derived as the driving force for its C-W evolution in this study based on the energy and gradient analysis. Then the physical and mathematical model of the C-W transition is found after the C-W driving force or transition pressure, the resistance, and the parameters of the meniscus beneath the droplet are formulated. The results show that the micro/nano structural parameters significantly affect the C-W driving force and resistance, The smaller the pillar diameter and pitch, the minor the C-W transition pressure, and the larger the resistance. Consequently, the C-W transition is difficult to be completed for the droplets on nano-textured surfaces. Meanwhile if the posts are too short, the front of the curved liquid-air interface below the droplet will touch the structural substrate easily even though the three phase contact line (TPCL) has not depinned. When the posts are high enough, the TPCL beneath the drop must move firstly before the meniscus can reach the substrate. As a result, the droplet on a textured surface with short pillars is easy to complete its C-W evolution. On the other hand, the smaller the droplet, the easier the C-W shift, since the transition pressure becomes larger, which well explains why an evaporating drop will collapse spontaneously from composite to Wenzel state. Besides, both intrinsic and advancing contact angles affect the C-W transition as well. The greater the two angles, the harder the C-W transition. In the end, the C-W transition parameters and the critical conditions measured in literatures are calculated and compared, and the calculations accord well with the experimental results. 展开更多
关键词 WETTING spontaneous transition textured surfaces interface free energy
在线阅读 下载PDF
Analysis of meniscus beneath metastable droplets and wetting transition on micro/nano textured surfaces
5
作者 Yaniie Li Xiangqin Li +1 位作者 Tianqing Liu Weiguo Song 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期439-449,共11页
Tile expressions of interface flee energy (IFE) of composite droplets with meniscal liquid-air interlhce in metastable state on nlicro/nano textured snrfaces were formulated. Then tile parameters to describe the men... Tile expressions of interface flee energy (IFE) of composite droplets with meniscal liquid-air interlhce in metastable state on nlicro/nano textured snrfaces were formulated. Then tile parameters to describe the meniscus were determined based on the principle of minimtun 1FE. Furthermore, the IFE barriers and the necessary and sufficient conditions of drop wetting transition fl'om Cassie to Wenzel were analyzed and the corresponding criteria were lk^rmulated. The results show that the liquid-air interface below a composite droplet is fiat when the post pitches are relatively small, but in a shape of curved meniscus when the piteches are comparatively large and the curvature depends on structural parameters. The angle between meniscus and pillar wall is just equal to the supplementary angle of intrinsic contact angle of post material. The calculations also illustrate that Cassie droplets will transform to Wenzel state when post pitch is large enough or when drop volume is sufficiently small. The opposite transition from Wenzel to Cassie state, however, is unable to take place spontaneously because the energy barrier is always positive. Finally, the calculation results of this model are well consistent with tile experimental obserwttions in literatures for the wetting transition of droplets from Cassie to Wenzel state. 展开更多
关键词 interface free energy DROPLET WETTING transition energy barrier
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部