V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve th...V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve the stability,organic small molecule choline chloride intercalation is used to expand the spacing of the vanadium pentoxide layers and increase the cycling stability.Therefore,we consider the introduction of Sr^(2+)to cointercalate with choline chloride.Here,we synthes-ized vanadium pentoxide cointercalated with Sr^(2+)and choline ions(Ch^(+))via a simple hydrothermal method.The electro-chemical performance shows an enhanced cathode capacitance contribution of Sr&Ch-V_(2)O_(5),with a discharge capacity of 526 mAh·g^(-1)at 0.1 A·g^(-1)and a retention rate of 78.9%after 2000 cycles at 5 A·g^(-1).This work offers a novel strategy for the design of organic‒inorganic hybrid materials for use as cathodes in aqueous zinc-ion batteries.展开更多
Visible-light-driven ZnGaNO solid solution–carbon nitride intercalation compound(CNIC) composite photocatalyst was synthesized via a mixing and heating method. The composite photocatalyst was characterized by X-ray d...Visible-light-driven ZnGaNO solid solution–carbon nitride intercalation compound(CNIC) composite photocatalyst was synthesized via a mixing and heating method. The composite photocatalyst was characterized by X-ray diffraction(XRD), field-emission scanning electron microscopy(FESEM), high-resolution transmission electron microscopy(HRTEM), Fourier transform infrared(FT-IR) spectroscopy, UV-vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy(XPS), photoluminescence(PL) spectroscopy and BET surface area measurements. The activity of ZnGaNO–CNIC composite photocatalyst for photodegradation of methyl orange(MO) is higher than that of either single-phase CNIC or ZnGaNO solid solution. The as-prepared composite photocatalysts exhibit an improved photocatalytic activity due to enhancement for the separation and transport of photo-generated electron–hole pairs.展开更多
Novel organic-inorganic composite photocatalyst offers new opportunities in the practical applications of photocatalysis. Novel visible light-induced Cr-doped Sr Ti O3–carbon nitride intercalation compound(CNIC) comp...Novel organic-inorganic composite photocatalyst offers new opportunities in the practical applications of photocatalysis. Novel visible light-induced Cr-doped Sr Ti O3–carbon nitride intercalation compound(CNIC) composite photocatalysts were synthesized. The composite photocatalyst was characterized by X-ray diffraction(XRD), field-emission scanning electron microscopy(FESEM), high-resolution transmission electron microscopy(HRTEM), Fourier transform infrared(FT-IR) spectroscopy, UV-vis diffuse reflection spectroscopy, photoluminescence(PL) spectroscopy, and BET surface area analyzer. The photocatalytic oxidation ability of the novel composite photocatalyst was evaluated using methyl orange(MO) as a target pollutant. The photocatalysts exhibited a significantly enhanced photocatalytic performance in degrading MO. For maximizing the photodegradation activity of the composite photocatalysts, the optimal CNIC content was determined. The improved photocatalytic activity of the as-prepared Cr-doped Sr Ti O3–CNIC composite photocatalyst may be attributed to the enhancement of photo-generated electron–hole separations at the interface.展开更多
The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNT...The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNTs)during the growth process of MOF crystals,synthesizing a metalloporphyrin-based MOF catalyst TCPPCo-MOF-CNT with a unique CNT-intercalated MOF structure.Physical characterization revealed that the CNTs enhance the overall conductivity while retaining the original characteristics of the MOF and metalloporphyrin.Simultaneously,the insertion of CNTs generated adequate mesopores and created a hierarchical porous structure that enhances mass transfer efficiency.X-ray photoelectron spectroscopic analysis confirmed that the C atom in CNT changed the electron cloud density on the catalytic active center Co,optimizing the electronic structure.Consequently,the E_(1/2) of the TCPPCo-MOF-CNT catalyst under neutral conditions reached 0.77 V(vs.RHE),outperforming the catalyst without CNTs.When the TCPPCo-MOF-CNT was employed as the cathode catalyst in assembling microbial fuel cells(MFCs)with Nafion-117 as the proton exchange membrane,the maxi-mum power density of MFCs reached approximately 500 mW·m^(-2).展开更多
Tubular halloysite is a hydrated polymorph of kaolinite, commonly considered as its associated mineral. Due to its unique mesoscopic (2–50 nm) tubular structure, it has attracted great interest in the field of adsorp...Tubular halloysite is a hydrated polymorph of kaolinite, commonly considered as its associated mineral. Due to its unique mesoscopic (2–50 nm) tubular structure, it has attracted great interest in the field of adsorption, catalysis, and nanocarrier. The halloysites in different deposits present various morphological properties which significantly affect the interface reactions with functional guests. These scattered properties in addition to their low purity severely limit the actual applications of halloysite in industry.展开更多
Montmorillonites (MMT) was modified with nonionic surfactant Trion X-100 (OP-10) and anionic surfactants sodium stearate (SSTA) and sodium dodecyl benzene sulfonate (SDBS) respectively. In this study, the effects of a...Montmorillonites (MMT) was modified with nonionic surfactant Trion X-100 (OP-10) and anionic surfactants sodium stearate (SSTA) and sodium dodecyl benzene sulfonate (SDBS) respectively. In this study, the effects of anionic surfactant types and MMT types on modification montmorillonite were investigated. XRD analysis results showed that SSTA/OP-10/MMT and SDBS/OP-10/MMT were successfully obtained. The basal spacing of SSTA/OP-10/MMT reached 5.07nm and the SSTA intercalation reaction was relatively stable. Different types of MMT (Xinjiang natural sodium montmorillonite(MMT-1), Jianping sodium montmorillonite (MMT-2) and artificial sodium montmorillonite(MMT-3)) were modified with SSTA/OP-10. XRD test results showed that MMT-1, MMT-2 and MMT-3 can be modified by SSTA/OP-10. Anion-nonionic organic montmorillonite (SSTA/OP-10/MMT-1, SSTA/OP-10/MMT-2 and SSTA/OP-10/MMT-3 were successfully obtained respectively. The higher expansion capacity was found to be beneficial to organic modification.展开更多
文摘V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve the stability,organic small molecule choline chloride intercalation is used to expand the spacing of the vanadium pentoxide layers and increase the cycling stability.Therefore,we consider the introduction of Sr^(2+)to cointercalate with choline chloride.Here,we synthes-ized vanadium pentoxide cointercalated with Sr^(2+)and choline ions(Ch^(+))via a simple hydrothermal method.The electro-chemical performance shows an enhanced cathode capacitance contribution of Sr&Ch-V_(2)O_(5),with a discharge capacity of 526 mAh·g^(-1)at 0.1 A·g^(-1)and a retention rate of 78.9%after 2000 cycles at 5 A·g^(-1).This work offers a novel strategy for the design of organic‒inorganic hybrid materials for use as cathodes in aqueous zinc-ion batteries.
基金Project(51208102)supported by the National Natural Science Foundation of China
文摘Visible-light-driven ZnGaNO solid solution–carbon nitride intercalation compound(CNIC) composite photocatalyst was synthesized via a mixing and heating method. The composite photocatalyst was characterized by X-ray diffraction(XRD), field-emission scanning electron microscopy(FESEM), high-resolution transmission electron microscopy(HRTEM), Fourier transform infrared(FT-IR) spectroscopy, UV-vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy(XPS), photoluminescence(PL) spectroscopy and BET surface area measurements. The activity of ZnGaNO–CNIC composite photocatalyst for photodegradation of methyl orange(MO) is higher than that of either single-phase CNIC or ZnGaNO solid solution. The as-prepared composite photocatalysts exhibit an improved photocatalytic activity due to enhancement for the separation and transport of photo-generated electron–hole pairs.
基金Project(51208102)supported by the National Natural Science Foundation of China
文摘Novel organic-inorganic composite photocatalyst offers new opportunities in the practical applications of photocatalysis. Novel visible light-induced Cr-doped Sr Ti O3–carbon nitride intercalation compound(CNIC) composite photocatalysts were synthesized. The composite photocatalyst was characterized by X-ray diffraction(XRD), field-emission scanning electron microscopy(FESEM), high-resolution transmission electron microscopy(HRTEM), Fourier transform infrared(FT-IR) spectroscopy, UV-vis diffuse reflection spectroscopy, photoluminescence(PL) spectroscopy, and BET surface area analyzer. The photocatalytic oxidation ability of the novel composite photocatalyst was evaluated using methyl orange(MO) as a target pollutant. The photocatalysts exhibited a significantly enhanced photocatalytic performance in degrading MO. For maximizing the photodegradation activity of the composite photocatalysts, the optimal CNIC content was determined. The improved photocatalytic activity of the as-prepared Cr-doped Sr Ti O3–CNIC composite photocatalyst may be attributed to the enhancement of photo-generated electron–hole separations at the interface.
基金the financial support from the National Natural Science Foundation of China(No.22178307)China Southern Power Grid(Grant Nos.0470002022030103HX00002-01).
文摘The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNTs)during the growth process of MOF crystals,synthesizing a metalloporphyrin-based MOF catalyst TCPPCo-MOF-CNT with a unique CNT-intercalated MOF structure.Physical characterization revealed that the CNTs enhance the overall conductivity while retaining the original characteristics of the MOF and metalloporphyrin.Simultaneously,the insertion of CNTs generated adequate mesopores and created a hierarchical porous structure that enhances mass transfer efficiency.X-ray photoelectron spectroscopic analysis confirmed that the C atom in CNT changed the electron cloud density on the catalytic active center Co,optimizing the electronic structure.Consequently,the E_(1/2) of the TCPPCo-MOF-CNT catalyst under neutral conditions reached 0.77 V(vs.RHE),outperforming the catalyst without CNTs.When the TCPPCo-MOF-CNT was employed as the cathode catalyst in assembling microbial fuel cells(MFCs)with Nafion-117 as the proton exchange membrane,the maxi-mum power density of MFCs reached approximately 500 mW·m^(-2).
文摘Tubular halloysite is a hydrated polymorph of kaolinite, commonly considered as its associated mineral. Due to its unique mesoscopic (2–50 nm) tubular structure, it has attracted great interest in the field of adsorption, catalysis, and nanocarrier. The halloysites in different deposits present various morphological properties which significantly affect the interface reactions with functional guests. These scattered properties in addition to their low purity severely limit the actual applications of halloysite in industry.
文摘Montmorillonites (MMT) was modified with nonionic surfactant Trion X-100 (OP-10) and anionic surfactants sodium stearate (SSTA) and sodium dodecyl benzene sulfonate (SDBS) respectively. In this study, the effects of anionic surfactant types and MMT types on modification montmorillonite were investigated. XRD analysis results showed that SSTA/OP-10/MMT and SDBS/OP-10/MMT were successfully obtained. The basal spacing of SSTA/OP-10/MMT reached 5.07nm and the SSTA intercalation reaction was relatively stable. Different types of MMT (Xinjiang natural sodium montmorillonite(MMT-1), Jianping sodium montmorillonite (MMT-2) and artificial sodium montmorillonite(MMT-3)) were modified with SSTA/OP-10. XRD test results showed that MMT-1, MMT-2 and MMT-3 can be modified by SSTA/OP-10. Anion-nonionic organic montmorillonite (SSTA/OP-10/MMT-1, SSTA/OP-10/MMT-2 and SSTA/OP-10/MMT-3 were successfully obtained respectively. The higher expansion capacity was found to be beneficial to organic modification.