期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于交互差分时空LSTM的网格化臭氧浓度预测 被引量:1
1
作者 刘恩海 任晓康 +3 位作者 张智 李妍 赵娜 张军 《河北工业大学学报》 CAS 2023年第3期36-43,共8页
臭氧浓度的预测对于大气环境治理、空气质量改善等起到了重要的作用。本文提出了一种交互差分时空LSTM网络预测模型(ST-IDN)来挖掘臭氧浓度历史数据的时间相关性和空间相关性,并成功将其应用到网格化臭氧浓度数据预测上。在该模型中,首... 臭氧浓度的预测对于大气环境治理、空气质量改善等起到了重要的作用。本文提出了一种交互差分时空LSTM网络预测模型(ST-IDN)来挖掘臭氧浓度历史数据的时间相关性和空间相关性,并成功将其应用到网格化臭氧浓度数据预测上。在该模型中,首先交互模块(IC)可以通过一系列的卷积操作来捕捉短期上下文信息,其次层融合模块(LF)可以融合不同层的空间信息来获得上一时刻丰富的空间信息,最后差分时空LSTM模块(DSTM)将捕捉到的时间信息和空间信息进行统一建模实现臭氧浓度预测。所构建模型分别与卷积LSTM网络(ConvLSTM)、预测循环神经网络(PredRNN)以及Memory in Memory网络(MIM)模型在河北省气象局提供的臭氧浓度数据上进行了对比分析,ST-IDN模型的平均绝对误差分别降低了19.836%、12.924%、7.506%。实验结果表明,所提出的模型能够提高臭氧浓度的预测精度。 展开更多
关键词 交互差分时空lstm预测网络 网格化臭氧浓度数据 臭氧浓度预测 时间信息 空间信息
在线阅读 下载PDF
嵌入多阶泰勒微分知识的多尺度注意力循环网络深度时空序列预测方法
2
作者 孙强 赵珂 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第6期2605-2618,共14页
融合先验物理知识的深度时空序列预测方法通常使用偏微分方程(PDE)进行建模,这种做法通常存在两大问题:(1)偏微分方程的近似精度低;(2)无法在循环网络中有效捕捉多种空间尺度的时空特征和时空序列的边缘相关空间信息。为此,该文提出了... 融合先验物理知识的深度时空序列预测方法通常使用偏微分方程(PDE)进行建模,这种做法通常存在两大问题:(1)偏微分方程的近似精度低;(2)无法在循环网络中有效捕捉多种空间尺度的时空特征和时空序列的边缘相关空间信息。为此,该文提出了融合泰勒微分的卷积循环神经网络(TDI-CRNN)。首先,为了提高高阶偏微分方程的近似精度并缓解偏微分方程应用的局限性,设计了一种多阶泰勒近似物理模块。该模块首先使用泰勒展开式对输入序列作微分逼近,再将不同阶数之间的微分卷积层使用微分系数耦合,最后动态调整泰勒展开结果的截断阶数与微分项数。其次,为了捕获循环网络隐藏状态的多种空间尺度特征并更好地捕捉时空序列的边缘相关空间信息,设计了一种多尺度注意力循环模块(MSARM),在该模块的多尺度卷积空间注意力UNet(即MCSA-UNet)的卷积层中使用了多尺度卷积和空间注意力机制,目的是关注时空序列的局部空间区域。在Moving MNIST,KTH以及CIKM数据集上开展了大量实验,Moving MNIST数据集的均方误差(MSE)指标下降到42.7,结构相似性指数(SSIM)提高到0.912;KTH数据集的SSIM和峰值信噪比(PSNR)分别提高到0.882和29.03;CIKM数据集上的临界成功指数(CSI)提高到0.515。最终的可视化和定量预测结果均验证了TDI-CRNN模型的合理性和有效性。 展开更多
关键词 时空序列预测 长短期记忆网络 知识引导 偏微分方程 泰勒展开式
在线阅读 下载PDF
基于时空注意力机制的新冠肺炎疫情预测模型 被引量:5
3
作者 鲍昕 谭智一 +1 位作者 鲍秉坤 徐常胜 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第8期1495-1504,共10页
新冠肺炎疫情持续蔓延给人类社会带来深远影响,准确预测各地区的病毒传播趋势对防控疫情而言至关重要。现有研究主要基于传统的时序预测模型和传染病模型,鲜有考虑疫情地区关联复杂和时序依赖性强的特点,限制了其疫情预测的性能。为此,... 新冠肺炎疫情持续蔓延给人类社会带来深远影响,准确预测各地区的病毒传播趋势对防控疫情而言至关重要。现有研究主要基于传统的时序预测模型和传染病模型,鲜有考虑疫情地区关联复杂和时序依赖性强的特点,限制了其疫情预测的性能。为此,针对新冠肺炎疫情的预测任务,提出了一种时空注意力驱动的自编码器框架。通过引入空间注意力机制捕捉病毒感染序列间的动态空间关联性,利用时间注意力机制挖掘病毒感染序列中复杂的时序依赖性,以此实现对不同地区的新冠肺炎病毒传播趋势的准确预测。在模型的编码器端,融合空间注意力机制的长短期记忆(LSTM)网络,关联目标地区与其他地区的病毒感染序列,提取该区域近期新冠肺炎疫情的时序特征。在模型的解码器端,将时间注意力机制引入基于LSTM网络的解码器中,通过捕捉病毒感染序列的时序依赖性推测未来的新冠肺炎疫情趋势变化。在多个公开的新冠肺炎疫情数据集上对所提模型进行验证,实验结果表明:所提模型的预测性能超越了LSTM等模型;在公开的欧洲部分国家新冠肺炎疫情数据集上,预测误差指标RMSE和MAE分别降低了22.3%和25.0%,在中国部分省级单位新冠肺炎疫情数据集上,RMSE和MAE分别降低了10.1%和10.4%。 展开更多
关键词 新冠肺炎疫情预测 注意力网络 时空序列预测 长短期记忆(lstm)网络 自编码器
在线阅读 下载PDF
基于时空特征的无线网络流量预测方法 被引量:1
4
作者 袁浙科 《无线通信技术》 2022年第3期24-28,34,共6页
无线网络流量分布具有空间上和时间上的特征,针对传统预测方法对流量分布空间特征的利用不足问题,提出三维卷积神经网络(3D-CNN)和长短期记忆网络(LSTM)相结合的无线网络流量预测模型。首先通过3D-CNN挖掘流量数据的局部时空关联性,并... 无线网络流量分布具有空间上和时间上的特征,针对传统预测方法对流量分布空间特征的利用不足问题,提出三维卷积神经网络(3D-CNN)和长短期记忆网络(LSTM)相结合的无线网络流量预测模型。首先通过3D-CNN挖掘流量数据的局部时空关联性,并利用空间注意力机制完善全局空间关联的提取;然后使用LSTM模型对抽象时空特征进行训练,并加入了注意力机制缓解循环神经网络的遗忘现象带来的信息损耗。运用此方法对"意大利电信大数据挑战赛"的公开数据集进行训练,其均方根误差(RMSE)和平均绝对误差(MAE)分别降至5.17和3.32,明显优于其他对比预测模型。 展开更多
关键词 无线网络 流量预测 时空特征挖掘 3D-CNN lstm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部