The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a ta...The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a target is completely determined by its dynamic characteristics.However,this is not true in the applications of road-target,sea-route-target or flight route-target tracking,where target trajectory shape is uncoupled with target velocity properties.In this paper,a new estimation algorithm based on separate modeling of target trajectory shape and dynamic characteristics is proposed.The trajectory of a target over a sliding window is described by a linear function of the arc length.To determine the unknown target trajectory,an augmented system is derived by denoting the unknown coefficients of the function as states in mileage coordinates.At every estimation cycle except the first one,the interaction(mixing)stage of the proposed algorithm starts from the latest estimated base state and a recalculated parameter vector,which is determined by the least squares(LS).Numerical experiments are conducted to assess the performance of the proposed algorithm.Simulation results show that the proposed algorithm can achieve better performance than the conventional coupled model-based algorithms in the presence of target maneuvers.展开更多
针对监控范围较大、目标外观特征少的视频多目标数据关联及跟踪问题,本文仅利用目标运动特征,提出了一种基于联合概率数据关联(joint probabilistic data association,JPDA)的复杂情况下视频多目标快速跟踪方法.首先采用murty算法求JPD...针对监控范围较大、目标外观特征少的视频多目标数据关联及跟踪问题,本文仅利用目标运动特征,提出了一种基于联合概率数据关联(joint probabilistic data association,JPDA)的复杂情况下视频多目标快速跟踪方法.首先采用murty算法求JPDA的最优K个联合事件,大大降低了计算复杂度;然后根据JPDA的关联概率讨论目标的运动情况,分析在多目标新出现、遮挡、消失、分离(前景检测存在目标碎片)等复杂情况下当前帧量测与跟踪目标的数据关联问题,获取复杂运动的多目标跟踪轨迹.在多个监控视频上的实验结果表明,该方法能大大提高跟踪性能,实现复杂情况下的视频多目标快速跟踪.展开更多
针对多普勒盲区条件下预警机雷达多目标跟踪问题,基于交互式多模型(IMM,Interacting Multiple Models)、联合概率数据互联(JPDA,Joint Probability Data Association)和分布式不敏卡尔曼滤波(UKF,Unscented Kalman Filter)提出了预警机...针对多普勒盲区条件下预警机雷达多目标跟踪问题,基于交互式多模型(IMM,Interacting Multiple Models)、联合概率数据互联(JPDA,Joint Probability Data Association)和分布式不敏卡尔曼滤波(UKF,Unscented Kalman Filter)提出了预警机雷达与地基雷达对目标进行协同跟踪的方法。该方法利用目标的状态估计和预测实时计算每部雷达的动态融合权值,预测目标的多普勒频率。当预警机雷达对目标的量测不存在且检测到目标进入预警机雷达多普勒盲区时,由预警机雷达对目标状态进行外推,以此产生虚拟量测,用虚拟量测与地基雷达协同跟踪对目标的融合估计状态进行更新;若预警机雷达对目标的量测不存在且目标不是进入多普勒盲区时,由地基雷达单独对目标的融合估计状态进行更新。当目标飞出预警机雷达多普勒盲区后,将预警机雷达对目标的状态估计再次与地基雷达进行关联,并根据动态权值融合更新目标状态。仿真结果表明,该方法能够改善多普勒盲区内多目标航迹的连续性和跟踪精度。展开更多
基金supported by the National Natural Science Foundation of China(61671181).
文摘The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a target is completely determined by its dynamic characteristics.However,this is not true in the applications of road-target,sea-route-target or flight route-target tracking,where target trajectory shape is uncoupled with target velocity properties.In this paper,a new estimation algorithm based on separate modeling of target trajectory shape and dynamic characteristics is proposed.The trajectory of a target over a sliding window is described by a linear function of the arc length.To determine the unknown target trajectory,an augmented system is derived by denoting the unknown coefficients of the function as states in mileage coordinates.At every estimation cycle except the first one,the interaction(mixing)stage of the proposed algorithm starts from the latest estimated base state and a recalculated parameter vector,which is determined by the least squares(LS).Numerical experiments are conducted to assess the performance of the proposed algorithm.Simulation results show that the proposed algorithm can achieve better performance than the conventional coupled model-based algorithms in the presence of target maneuvers.
文摘针对监控范围较大、目标外观特征少的视频多目标数据关联及跟踪问题,本文仅利用目标运动特征,提出了一种基于联合概率数据关联(joint probabilistic data association,JPDA)的复杂情况下视频多目标快速跟踪方法.首先采用murty算法求JPDA的最优K个联合事件,大大降低了计算复杂度;然后根据JPDA的关联概率讨论目标的运动情况,分析在多目标新出现、遮挡、消失、分离(前景检测存在目标碎片)等复杂情况下当前帧量测与跟踪目标的数据关联问题,获取复杂运动的多目标跟踪轨迹.在多个监控视频上的实验结果表明,该方法能大大提高跟踪性能,实现复杂情况下的视频多目标快速跟踪.
文摘针对多普勒盲区条件下预警机雷达多目标跟踪问题,基于交互式多模型(IMM,Interacting Multiple Models)、联合概率数据互联(JPDA,Joint Probability Data Association)和分布式不敏卡尔曼滤波(UKF,Unscented Kalman Filter)提出了预警机雷达与地基雷达对目标进行协同跟踪的方法。该方法利用目标的状态估计和预测实时计算每部雷达的动态融合权值,预测目标的多普勒频率。当预警机雷达对目标的量测不存在且检测到目标进入预警机雷达多普勒盲区时,由预警机雷达对目标状态进行外推,以此产生虚拟量测,用虚拟量测与地基雷达协同跟踪对目标的融合估计状态进行更新;若预警机雷达对目标的量测不存在且目标不是进入多普勒盲区时,由地基雷达单独对目标的融合估计状态进行更新。当目标飞出预警机雷达多普勒盲区后,将预警机雷达对目标的状态估计再次与地基雷达进行关联,并根据动态权值融合更新目标状态。仿真结果表明,该方法能够改善多普勒盲区内多目标航迹的连续性和跟踪精度。