Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, ela...Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, elastic, geometric characteristics and hydraulic parameters. The purpose of this work is to investigate the dynamic behavior of control valves in the response to self-excited fluid flow. An analytical and numerical method is developed to simulate the dynamic and vibrational behavior of sliding dam valves, in response to flow excitation. In order to demonstrate the effectiveness of proposed model, the simulation results are validated with experimental ones. Finally, to achieve the optimal valve geometry, numerical results for various shapes of valves are compared. Rounded valve with the least amount of flow turbulence obtains lower fluctuations and vibration amplitude compared with the flat and steep valves. Simulation results demonstrate that with the optimal design requirements of valves, vibration amplitude can be reduced by an average to 30%.展开更多
当海上多船联合作业时,船体之间会发生水动力干扰。当间距较小时,两船的水动力参数与间距内部波面升高在某些频率处存在强烈的共振现象,而基于理想流体的经典势流理论对此共振结果的模拟存在较大失真。为了弥补此项问题,文章采用加盖阻...当海上多船联合作业时,船体之间会发生水动力干扰。当间距较小时,两船的水动力参数与间距内部波面升高在某些频率处存在强烈的共振现象,而基于理想流体的经典势流理论对此共振结果的模拟存在较大失真。为了弥补此项问题,文章采用加盖阻尼法(damping lid method)对3 m间距旁靠布置的两艘相同驳船的水动力干扰现象进行研究。通过在间距内部的自由液面边界条件上添加阻尼耗散项,使间距内部的过大波面升高被显著抑制,从而得到更接近实际的数值计算结果。在此基础上开展模型试验研究,通过对比模型试验与数值模拟结果发现,当无量纲阻尼参数ε取为0.026时,两船之间自由液面升高、两船的运动响应与平均漂移力计算结果均与试验结果吻合较好。展开更多
文摘Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, elastic, geometric characteristics and hydraulic parameters. The purpose of this work is to investigate the dynamic behavior of control valves in the response to self-excited fluid flow. An analytical and numerical method is developed to simulate the dynamic and vibrational behavior of sliding dam valves, in response to flow excitation. In order to demonstrate the effectiveness of proposed model, the simulation results are validated with experimental ones. Finally, to achieve the optimal valve geometry, numerical results for various shapes of valves are compared. Rounded valve with the least amount of flow turbulence obtains lower fluctuations and vibration amplitude compared with the flat and steep valves. Simulation results demonstrate that with the optimal design requirements of valves, vibration amplitude can be reduced by an average to 30%.
基金Supported by Youth innovation fund of State Key Laboratory of Ocean Engineering(No.GKZD010059-21)~~
文摘当海上多船联合作业时,船体之间会发生水动力干扰。当间距较小时,两船的水动力参数与间距内部波面升高在某些频率处存在强烈的共振现象,而基于理想流体的经典势流理论对此共振结果的模拟存在较大失真。为了弥补此项问题,文章采用加盖阻尼法(damping lid method)对3 m间距旁靠布置的两艘相同驳船的水动力干扰现象进行研究。通过在间距内部的自由液面边界条件上添加阻尼耗散项,使间距内部的过大波面升高被显著抑制,从而得到更接近实际的数值计算结果。在此基础上开展模型试验研究,通过对比模型试验与数值模拟结果发现,当无量纲阻尼参数ε取为0.026时,两船之间自由液面升高、两船的运动响应与平均漂移力计算结果均与试验结果吻合较好。