机器学习已经广泛用于生态系统研究。基于2014年1月1日至2018年12月31日兴安落叶松生态系统碳通量(NEE)观测数据,分析了其动态变化特征,并采用多种机器学习方法进行模拟。结果表明:(1)生长季兴安落叶松生态系统NEE日动态呈“U”变化,整...机器学习已经广泛用于生态系统研究。基于2014年1月1日至2018年12月31日兴安落叶松生态系统碳通量(NEE)观测数据,分析了其动态变化特征,并采用多种机器学习方法进行模拟。结果表明:(1)生长季兴安落叶松生态系统NEE日动态呈“U”变化,整体表现为碳汇,7月份碳汇能力最强,达67.57 g C m^(-2)月^(-1),9月至次年5月表现为碳源。(2)结构方程模型分析表明,兴安落叶松生态系统NEE的主要影响因子为潜热通量(LE)、净辐射(Rn)、叶面积指数(LAI)、空气温度(Ta)、相对湿度(RH)、饱和水汽压差(VPD)和土壤含水量(SWC),其中潜热通量和净辐射是影响NEE变化的最主导因素。(3)四种机器学习方法(RF、XGBoost、SVM、ANN)均能较准确地模拟兴安落叶松生态系统NEE,其中XGBoost和RF的模拟结果最为相近,但XGBoost在模拟精度和计算效率方面优于RF。研究结果为应用机器学习方法估算生态系统碳通量提供了依据。展开更多
长期时间序列预测利用历史数据对未来较远时段的序列走势进行预测,为长期预警、规划和决策提供支持。现有方法在进行长期预测时,普遍存在分布偏移和长期依赖关系难以捕获的问题。提出一种面向长期时间序列预测的多项式投影与信息交换架...长期时间序列预测利用历史数据对未来较远时段的序列走势进行预测,为长期预警、规划和决策提供支持。现有方法在进行长期预测时,普遍存在分布偏移和长期依赖关系难以捕获的问题。提出一种面向长期时间序列预测的多项式投影与信息交换架构LPPIEA(Legendre polynomial projection and information exchange architecture)。引入可逆实例数据归一化,降低长期时间序列中分布偏移对预测的影响。使用勒让德多项式投影来处理复杂的时间模式,获取数据的高维特征表示以增强模型推理长期时间序列的能力。为了有效捕获长期时间依赖关系,构建轻量化的信息交换架构来高效捕获长期时间依赖关系,从而实现准确高效的长期时间序列预测。在4个常用的公开数据集上的实验结果表明,LPPIEA的预测误差相比于基线方法平均降低11.4%,同时还具有较高的计算效率。展开更多
针对不同陆地生态系统中净生态系统CO_(2)交换量(Net ecosystem exchange,NEE)数据的长期连续测量中存在的数据差异问题,以中国气象局青海高寒生态气象野外科学试验基地野牛沟试验站为研究对象,利用涡动协方差技术获取高寒湿地生态系统...针对不同陆地生态系统中净生态系统CO_(2)交换量(Net ecosystem exchange,NEE)数据的长期连续测量中存在的数据差异问题,以中国气象局青海高寒生态气象野外科学试验基地野牛沟试验站为研究对象,利用涡动协方差技术获取高寒湿地生态系统水平上的NEE数据。通过对比机器学习算法和通量数据后处理算法(Reddyproc)两种数据填充方法,提出了一种结合机器学习与时序异常检测(Time series anomaly detection,TAD)的新框架,用于NEE数据的空白填补。研究结果表明:1)Reddyproc算法在剔除异常值后,NEE插补决定系数(R^(2))达到0.67,数据离散度显著降低,数据质量提升;2)八种机器学习模型中,随机森林(Random Forest,RF)模型表现最优,其决定系数(Coefficient of determination,R^(2))为0.63,均方根误差(Root mean square error,RMSE)为2.17μmol s^(-1)m^(-2),且经过时序异常检测后,估算精度提升了17%;3)Reddyproc和RF估算的CO_(2)通量存在季节性差异,冷季(1—3月和10—12月)Reddyproc估算值低于RF,而暖季(4—9月)则高于RF,表明冬季Reddyproc低估了CO_(2)释放,夏季则低估了CO_(2)吸收。该新框架有效解决了数据采集不确定性和缺失导致的二氧化碳通量计算准确率问题,为研究高寒湿地生态系统的碳固持能力、对气候变化的响应以及极端事件的影响提供了关键数据支持。未来研究应进一步探索新方法的适用性、改进和优化方向,以实现更准确、可靠且适用于不同生态系统的填补模型,为生态系统建模和预测提供强大工具。展开更多
文摘机器学习已经广泛用于生态系统研究。基于2014年1月1日至2018年12月31日兴安落叶松生态系统碳通量(NEE)观测数据,分析了其动态变化特征,并采用多种机器学习方法进行模拟。结果表明:(1)生长季兴安落叶松生态系统NEE日动态呈“U”变化,整体表现为碳汇,7月份碳汇能力最强,达67.57 g C m^(-2)月^(-1),9月至次年5月表现为碳源。(2)结构方程模型分析表明,兴安落叶松生态系统NEE的主要影响因子为潜热通量(LE)、净辐射(Rn)、叶面积指数(LAI)、空气温度(Ta)、相对湿度(RH)、饱和水汽压差(VPD)和土壤含水量(SWC),其中潜热通量和净辐射是影响NEE变化的最主导因素。(3)四种机器学习方法(RF、XGBoost、SVM、ANN)均能较准确地模拟兴安落叶松生态系统NEE,其中XGBoost和RF的模拟结果最为相近,但XGBoost在模拟精度和计算效率方面优于RF。研究结果为应用机器学习方法估算生态系统碳通量提供了依据。
文摘长期时间序列预测利用历史数据对未来较远时段的序列走势进行预测,为长期预警、规划和决策提供支持。现有方法在进行长期预测时,普遍存在分布偏移和长期依赖关系难以捕获的问题。提出一种面向长期时间序列预测的多项式投影与信息交换架构LPPIEA(Legendre polynomial projection and information exchange architecture)。引入可逆实例数据归一化,降低长期时间序列中分布偏移对预测的影响。使用勒让德多项式投影来处理复杂的时间模式,获取数据的高维特征表示以增强模型推理长期时间序列的能力。为了有效捕获长期时间依赖关系,构建轻量化的信息交换架构来高效捕获长期时间依赖关系,从而实现准确高效的长期时间序列预测。在4个常用的公开数据集上的实验结果表明,LPPIEA的预测误差相比于基线方法平均降低11.4%,同时还具有较高的计算效率。
文摘针对不同陆地生态系统中净生态系统CO_(2)交换量(Net ecosystem exchange,NEE)数据的长期连续测量中存在的数据差异问题,以中国气象局青海高寒生态气象野外科学试验基地野牛沟试验站为研究对象,利用涡动协方差技术获取高寒湿地生态系统水平上的NEE数据。通过对比机器学习算法和通量数据后处理算法(Reddyproc)两种数据填充方法,提出了一种结合机器学习与时序异常检测(Time series anomaly detection,TAD)的新框架,用于NEE数据的空白填补。研究结果表明:1)Reddyproc算法在剔除异常值后,NEE插补决定系数(R^(2))达到0.67,数据离散度显著降低,数据质量提升;2)八种机器学习模型中,随机森林(Random Forest,RF)模型表现最优,其决定系数(Coefficient of determination,R^(2))为0.63,均方根误差(Root mean square error,RMSE)为2.17μmol s^(-1)m^(-2),且经过时序异常检测后,估算精度提升了17%;3)Reddyproc和RF估算的CO_(2)通量存在季节性差异,冷季(1—3月和10—12月)Reddyproc估算值低于RF,而暖季(4—9月)则高于RF,表明冬季Reddyproc低估了CO_(2)释放,夏季则低估了CO_(2)吸收。该新框架有效解决了数据采集不确定性和缺失导致的二氧化碳通量计算准确率问题,为研究高寒湿地生态系统的碳固持能力、对气候变化的响应以及极端事件的影响提供了关键数据支持。未来研究应进一步探索新方法的适用性、改进和优化方向,以实现更准确、可靠且适用于不同生态系统的填补模型,为生态系统建模和预测提供强大工具。