An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging per...An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging period, optimization of cold material adding systems and air blasting systems, the display of on line parameters, and the forecasting of copper mass in the copper blow period in copper smelting converters. They were integrated to build the Intelligent Decision Support System of the Operation Optimization of Copper Smelting Converter(IDSSOOCSC), which is self learning and self adaptating. Development steps, monoblock structure and basic functions of the IDSSOOCSC were introduced. After it was applied in a copper smelting converter, every production quota was clearly improved after IDSSOOCSC had been run for 4 months. Blister copper productivity is increased by 6%, processing load of cold input is increased by 8% and average converter life span is improved from 213 to 235 furnace times.展开更多
With the continuous improvement of radar intelligence, it is difficult for traditional countermeasures to achieve ideal results. In order to deal with complex, changeable, and unknown threat signals in the complex ele...With the continuous improvement of radar intelligence, it is difficult for traditional countermeasures to achieve ideal results. In order to deal with complex, changeable, and unknown threat signals in the complex electromagnetic environment, a waveform intelligent optimization model based on intelligent optimization algorithm is proposed. By virtue of the universality and fast running speed of the intelligent optimization algorithm, the model can optimize the parameters used to synthesize the countermeasure waveform according to different external signals, so as to improve the countermeasure performance.Genetic algorithm(GA) and particle swarm optimization(PSO)are used to simulate the intelligent optimization of interruptedsampling and phase-modulation repeater waveform. The experimental results under different radar signal conditions show that the scheme is feasible. The performance comparison between the algorithms and some problems in the experimental results also provide a certain reference for the follow-up work.展开更多
生态学研究领域中对智能算法的使用呈现越来越丰富的趋势,其解决了许多重要问题。智能算法的应用已逐渐成为生态学研究的重要话题。研究以中国知网(CNKI核心)和Web of Science核心数据库中42439篇智能算法在生态学领域应用的相关学术论...生态学研究领域中对智能算法的使用呈现越来越丰富的趋势,其解决了许多重要问题。智能算法的应用已逐渐成为生态学研究的重要话题。研究以中国知网(CNKI核心)和Web of Science核心数据库中42439篇智能算法在生态学领域应用的相关学术论文为依据,借助文献计量学软件CiteSpace.6.3R1,介绍2013—2023年间国内外研究热点的发展现状和情况;根据每种智能算法在生态学优化、预测和评估研究中的作用,分类论述其实际研究过程和应用特征;分析智能算法应用的优势和当前存在的局限性;回顾智能算法对生态学研究的意义,并提出了对未来发展前景的展望。展开更多
文摘An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging period, optimization of cold material adding systems and air blasting systems, the display of on line parameters, and the forecasting of copper mass in the copper blow period in copper smelting converters. They were integrated to build the Intelligent Decision Support System of the Operation Optimization of Copper Smelting Converter(IDSSOOCSC), which is self learning and self adaptating. Development steps, monoblock structure and basic functions of the IDSSOOCSC were introduced. After it was applied in a copper smelting converter, every production quota was clearly improved after IDSSOOCSC had been run for 4 months. Blister copper productivity is increased by 6%, processing load of cold input is increased by 8% and average converter life span is improved from 213 to 235 furnace times.
文摘With the continuous improvement of radar intelligence, it is difficult for traditional countermeasures to achieve ideal results. In order to deal with complex, changeable, and unknown threat signals in the complex electromagnetic environment, a waveform intelligent optimization model based on intelligent optimization algorithm is proposed. By virtue of the universality and fast running speed of the intelligent optimization algorithm, the model can optimize the parameters used to synthesize the countermeasure waveform according to different external signals, so as to improve the countermeasure performance.Genetic algorithm(GA) and particle swarm optimization(PSO)are used to simulate the intelligent optimization of interruptedsampling and phase-modulation repeater waveform. The experimental results under different radar signal conditions show that the scheme is feasible. The performance comparison between the algorithms and some problems in the experimental results also provide a certain reference for the follow-up work.
文摘生态学研究领域中对智能算法的使用呈现越来越丰富的趋势,其解决了许多重要问题。智能算法的应用已逐渐成为生态学研究的重要话题。研究以中国知网(CNKI核心)和Web of Science核心数据库中42439篇智能算法在生态学领域应用的相关学术论文为依据,借助文献计量学软件CiteSpace.6.3R1,介绍2013—2023年间国内外研究热点的发展现状和情况;根据每种智能算法在生态学优化、预测和评估研究中的作用,分类论述其实际研究过程和应用特征;分析智能算法应用的优势和当前存在的局限性;回顾智能算法对生态学研究的意义,并提出了对未来发展前景的展望。