在AI for Science时代,电池设计自动化智能研发(battery design automation,BDA)平台通过整合先进的人工智能技术,为电池研发领域带来了革命性进展。BDA平台覆盖了文献调研、实验设计、合成制备、表征测试和分析优化这五个电池研发的关...在AI for Science时代,电池设计自动化智能研发(battery design automation,BDA)平台通过整合先进的人工智能技术,为电池研发领域带来了革命性进展。BDA平台覆盖了文献调研、实验设计、合成制备、表征测试和分析优化这五个电池研发的关键环节,利用机器学习、多尺度建模、预训练模型等先进算法,结合软件工程开发用户交互友好的工具,加速从理论设计到实验验证的整个电池研发周期。通过自动化的实验设计、合成制备、表征测试和性能优化,BDA平台不仅提升了研发效率,还提高了电池设计的精确度和可靠性,推动了电池技术向更高能量密度、更长循环寿命和更低成本的方向发展。展开更多
To realize the requirement of diagnostic sequence optimization in the process of design for testability, the authors put forward an optimization method based on quantum-behaved particle swarm optimization (QPSO) alg...To realize the requirement of diagnostic sequence optimization in the process of design for testability, the authors put forward an optimization method based on quantum-behaved particle swarm optimization (QPSO) algorithm. By a precedence ordering coding, the diagnostic sequence optimization can be translated into a precedence ordering problem in the multidimensional space of swarm. It can get the optimizing order quickly by using the powerful and quick search capability of QPSO algorithm, and the order is the diagnostic sequence for the system. The realization of the method is simpler than other methods, and the results are more excellent than others, and it has been applied in the engineering practice.展开更多
文摘在AI for Science时代,电池设计自动化智能研发(battery design automation,BDA)平台通过整合先进的人工智能技术,为电池研发领域带来了革命性进展。BDA平台覆盖了文献调研、实验设计、合成制备、表征测试和分析优化这五个电池研发的关键环节,利用机器学习、多尺度建模、预训练模型等先进算法,结合软件工程开发用户交互友好的工具,加速从理论设计到实验验证的整个电池研发周期。通过自动化的实验设计、合成制备、表征测试和性能优化,BDA平台不仅提升了研发效率,还提高了电池设计的精确度和可靠性,推动了电池技术向更高能量密度、更长循环寿命和更低成本的方向发展。
基金supported by the National Natural Science Foundation of China(60771063).
文摘To realize the requirement of diagnostic sequence optimization in the process of design for testability, the authors put forward an optimization method based on quantum-behaved particle swarm optimization (QPSO) algorithm. By a precedence ordering coding, the diagnostic sequence optimization can be translated into a precedence ordering problem in the multidimensional space of swarm. It can get the optimizing order quickly by using the powerful and quick search capability of QPSO algorithm, and the order is the diagnostic sequence for the system. The realization of the method is simpler than other methods, and the results are more excellent than others, and it has been applied in the engineering practice.