Joint radar and communication(JRC)technology has become important for civil and military applications for decades.This paper introduces the concepts,characteristics and advantages of JRC technology,presenting the typi...Joint radar and communication(JRC)technology has become important for civil and military applications for decades.This paper introduces the concepts,characteristics and advantages of JRC technology,presenting the typical applications that have benefited from JRC technology currently and in the future.This paper explores the state-of-the-art of JRC in the levels of coexistence,cooperation,co-design and collaboration.Compared to previous surveys,this paper reviews the entire trends that drive the development of radar sensing and wireless communication using JRC.Specifically,we explore an open research issue on radar and communication operating with mutual benefits based on collaboration,which represents the fourth stage of JRC evolution.This paper provides useful perspectives for future researches of JRC technology.展开更多
A multichannel noncoherent integration detection method based on high range resolution profile was presented in this paper. According to the property of the moment generating function, the distribution characteristics...A multichannel noncoherent integration detection method based on high range resolution profile was presented in this paper. According to the property of the moment generating function, the distribution characteristics of the noncoherent integrated signals with or without target presence were derived under the circumstance with noncorrelated Gaussian distribution noises. The loss of noncoherent integration was due to improper selection of integration range of cell numbers. A multi channel noncoherent integration detection scheme where the integration number in each channel va ries was proposed to solve this problem. The quality of this method for detection of various targets was evaluated. A comparison of fixed integration range cell number detection and multichannel inte gration detection for a high range resolution profile was presented. Simulation results indicated that the principle of the method was correct and performed well for unknown physical dimension targets. The method required little prior knowledge about target and was convenient for practical implementa tion.展开更多
基金supported by the National Natural Science Foundation of China (No. 61631003, 61601055)the National Science Fund for Distinguished Young Scholars (No. 61525101)
文摘Joint radar and communication(JRC)technology has become important for civil and military applications for decades.This paper introduces the concepts,characteristics and advantages of JRC technology,presenting the typical applications that have benefited from JRC technology currently and in the future.This paper explores the state-of-the-art of JRC in the levels of coexistence,cooperation,co-design and collaboration.Compared to previous surveys,this paper reviews the entire trends that drive the development of radar sensing and wireless communication using JRC.Specifically,we explore an open research issue on radar and communication operating with mutual benefits based on collaboration,which represents the fourth stage of JRC evolution.This paper provides useful perspectives for future researches of JRC technology.
基金Supported by the Advanced Research Foundation of General Armament Department(51307020101)
文摘A multichannel noncoherent integration detection method based on high range resolution profile was presented in this paper. According to the property of the moment generating function, the distribution characteristics of the noncoherent integrated signals with or without target presence were derived under the circumstance with noncorrelated Gaussian distribution noises. The loss of noncoherent integration was due to improper selection of integration range of cell numbers. A multi channel noncoherent integration detection scheme where the integration number in each channel va ries was proposed to solve this problem. The quality of this method for detection of various targets was evaluated. A comparison of fixed integration range cell number detection and multichannel inte gration detection for a high range resolution profile was presented. Simulation results indicated that the principle of the method was correct and performed well for unknown physical dimension targets. The method required little prior knowledge about target and was convenient for practical implementa tion.