Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic character...Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.展开更多
The path-following control of the asymmetry underactuated unmanned surface vehicle(USV) under external disturbances such as unknown constant and irrational ocean currents is discussed, and an adaptive sliding-mode pat...The path-following control of the asymmetry underactuated unmanned surface vehicle(USV) under external disturbances such as unknown constant and irrational ocean currents is discussed, and an adaptive sliding-mode path-following control system is proposed, which comprises a path-variable updated law,a modified integral line-of-sight(ILOS) guidance law based on a time-varying lookahead distance and adaptive feedback linearizing controllers combined with sliding-mode technique. A more accurate USV model without the assumption of having diagonal inertia and damping matrices is first presented, aiming at improving the performance of the path-following control. Next, the coordinate transformation is adopted to decouple the sway dynamic from the rudder angle, and the path-following errors dynamics without non-singular problem are presented in the moving Frenet-Serret frame. Then, based on the cascaded theorem and the adaptive sliding-mode method, the adaptive control law of position errors and course error are designed, among which the lookahead distance and integral gain are all computed as different functions of cross-track error to estimate and compensate the sideslip angle caused by external disturbances adaptively. Finally, according to the Lyapunov and cascaded theorem, the control system proposed is proved to be uniform globally asymptotic stability(UGAS) and uniform semiglobal exponential stability(USGES) when the control objectives are all achieved. Simulation results illustrate the precision and high-quality performance of this new controller.展开更多
为解决欠驱动船舶航迹直线和曲线跟踪控制问题,选取能解决航向不稳定等非线性问题的Bech模型,借助双曲正切函数,构造期望艏向方程,将航迹控制问题转化为航向控制问题。设计3阶跟踪微分器,对期望艏向及其微分信号进行精确提取。采用变结...为解决欠驱动船舶航迹直线和曲线跟踪控制问题,选取能解决航向不稳定等非线性问题的Bech模型,借助双曲正切函数,构造期望艏向方程,将航迹控制问题转化为航向控制问题。设计3阶跟踪微分器,对期望艏向及其微分信号进行精确提取。采用变结构积分滑模面函数设计非线性误差反馈控制律,加快系统收敛速度,提出基于线性自抗扰控制(Linear Active Disturbance Rejection Control,LADRC)的船舶航迹积分滑模控制器。该控制器的线性扩张状态观测器对系统内外总扰动进行在线估计与实时补偿;引入Hurwitz多项式,减少需整定的参数。仿真结果表明,航迹收敛快速准确,无超调,对外界干扰具有较强的鲁棒性。控制器参数具有一定的普适性,故其适用范围广。展开更多
基金supported by Naval Weapons and Equipment Pre-Research Project(Grant No.3020801010105).
文摘Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.
基金supported by the National Social Science Foundation of China(15GJ003-278)the National Natural Science Foundation of China(71501182)
文摘The path-following control of the asymmetry underactuated unmanned surface vehicle(USV) under external disturbances such as unknown constant and irrational ocean currents is discussed, and an adaptive sliding-mode path-following control system is proposed, which comprises a path-variable updated law,a modified integral line-of-sight(ILOS) guidance law based on a time-varying lookahead distance and adaptive feedback linearizing controllers combined with sliding-mode technique. A more accurate USV model without the assumption of having diagonal inertia and damping matrices is first presented, aiming at improving the performance of the path-following control. Next, the coordinate transformation is adopted to decouple the sway dynamic from the rudder angle, and the path-following errors dynamics without non-singular problem are presented in the moving Frenet-Serret frame. Then, based on the cascaded theorem and the adaptive sliding-mode method, the adaptive control law of position errors and course error are designed, among which the lookahead distance and integral gain are all computed as different functions of cross-track error to estimate and compensate the sideslip angle caused by external disturbances adaptively. Finally, according to the Lyapunov and cascaded theorem, the control system proposed is proved to be uniform globally asymptotic stability(UGAS) and uniform semiglobal exponential stability(USGES) when the control objectives are all achieved. Simulation results illustrate the precision and high-quality performance of this new controller.
文摘为解决欠驱动船舶航迹直线和曲线跟踪控制问题,选取能解决航向不稳定等非线性问题的Bech模型,借助双曲正切函数,构造期望艏向方程,将航迹控制问题转化为航向控制问题。设计3阶跟踪微分器,对期望艏向及其微分信号进行精确提取。采用变结构积分滑模面函数设计非线性误差反馈控制律,加快系统收敛速度,提出基于线性自抗扰控制(Linear Active Disturbance Rejection Control,LADRC)的船舶航迹积分滑模控制器。该控制器的线性扩张状态观测器对系统内外总扰动进行在线估计与实时补偿;引入Hurwitz多项式,减少需整定的参数。仿真结果表明,航迹收敛快速准确,无超调,对外界干扰具有较强的鲁棒性。控制器参数具有一定的普适性,故其适用范围广。