In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual ...In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.展开更多
A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonl...A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.展开更多
A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kal...A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAEAKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstra- ted that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter.展开更多
Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper pr...Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper proposes a robust adaptive UKF algorithm based on Support Vector Regression(SVR).The algorithm combines the advantages of support vector regression with small samples,nonlinear learning ability and online estimation capability of adaptive algorithm based on innovation.Firstly,the SVR model is trained by using the innovation in the sliding window,and the new innovation is monitored.If the deviation between the estimated innovation and the measured innovation exceeds a given threshold,then measured innovation will be replaced by the predicted innovation,and then the processed innovation is used to calculate the measurement noise covariance matrix using the adaptive estimation algorithm.Simulation experiments and measured data experiments show that SVRUKF is significantly better than the traditional UKF,robust UKF and adaptive UKF algorithms for the case where the covariance matrix is unknown and the measured values have outliers.展开更多
In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault toleran...In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault tolerance of global optimal fusion algorithm are the key problems to deal with. Based on theoretical analysis of the influencing factors of federated filtering fault tolerance, global fault-tolerant fusion algorithm and information sharing algorithm are proposed based on fuzzy assessment. It achieves intelligent fault-tolerant structure with two-stage and feedback, including real-time fault detection in sub-filters, and fault-tolerant fusion and information sharing in main filter. The simulation results demonstrate that the algorithm can effectively improve fault-tolerant ability and ensure relatively high positioning precision of integrated navigation system when a subsystem having gradual changing fault.展开更多
In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential...In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential residual Chi-square test and applies to fault detection of an integrated navigation system.The simulation result shows that the algorithm can accurately detect the fault information of global positioning system(GPS),eliminate the influence of false alarm and missed detection on filter,and enhance fault tolerance of integrated navigation systems.展开更多
High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important...High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important role in the performance evaluation of the navigation system.Traditional filter estimation methods usually assume that the measurement noise conforms to the Gaussian distribution,without considering the influence of the pollution introduced by the GNSS signal,which is susceptible to external interference.To address this problem,a high-precision filter estimation method using Gaussian process regression(GPR)is proposed to enhance the prediction and estimation capability of the unscented quaternion estimator(USQUE)to improve the navigation accuracy.Based on the advantage of the GPR machine learning function,the estimation performance of the sliding window for model training is measured.This method estimates the output of the observation information source through the measurement window and realizes the robust measurement update of the filter.The combination of GPR and the USQUE algorithm establishes a robust mechanism framework,which enhances the robustness and stability of traditional methods.The results of the trajectory simulation experiment and SINS/GNSS car-mounted tests indicate that the strategy has strong robustness and high estimation accuracy,which demonstrates the effectiveness of the proposed method.展开更多
To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-...To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-Gaussian error models,a new algorithm called the federated unscented particle filtering(FUPF) algorithm was introduced.In this algorithm,the unscented particle filter(UPF) served as the local filter,the federated filter was used to fuse outputs of all local filters,and the global filter result was obtained.Because the algorithm was not confined to the assumption of Gaussian noise,it was of great significance to integrated navigation systems described by the non-Gaussian noise.The proposed algorithm was tested in a vehicle's maneuvering trajectory,which included six flight phases:climbing,level flight,left turning,level flight,right turning and level flight.Simulation results are presented to demonstrate the improved performance of the FUPF over conventional federated unscented Kalman filter(FUKF).For instance,the mean of position-error decreases from(0.640×10-6 rad,0.667×10-6 rad,4.25 m) of FUKF to(0.403×10-6 rad,0.251×10-6 rad,1.36 m) of FUPF.In comparison of the FUKF,the FUPF performs more accurate in the SINS/CNS/GPS system described by the nonlinear/non-Gaussian error models.展开更多
In view of the problem that the current single-antenna GPS attitude determination system can only determine the body attitude when the sideslip angle is zero and the multiantenna GPS/SINS integrated navigation system ...In view of the problem that the current single-antenna GPS attitude determination system can only determine the body attitude when the sideslip angle is zero and the multiantenna GPS/SINS integrated navigation system is of large volume, high cost, and complex structure, this approach is presented to determine the attitude based on vector space with single-antenna GPS and accelerometers in the micro inertial measurement unit (MIMU). It can provide real-time and accurate attitude information. Subsequently, the single-antenna GPS/SINS integrated navigation system is designed based on the combination of position, velocity, and attitude. Finally the semi- physical simulations of single-antenna GPS attitude determination system and single-antenna GPS/SINS integrated navigation system are carried out. The simulation results, based on measured data, show that the single-antenna GPS/SINS system can provide more accurate navigation information compared to the GPS/SINS system, based on the combination of position and velocity. Furthermore, the single-antenna GPS/SINS system is characteristic of lower cost and simpler structure. It provides the basis for the application of a single-antenna GPS/SINS integrated navigation system in a micro aerial vehicle (MAV).展开更多
A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajec...A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design.展开更多
Since any disturbance and fault may lead to significant performance degradation in practical dynamical systems,it is essential for a system to be robust to disturbances but sensitive to faults.For this purpose,this pa...Since any disturbance and fault may lead to significant performance degradation in practical dynamical systems,it is essential for a system to be robust to disturbances but sensitive to faults.For this purpose,this paper proposes a robust fault-detection filter for linear discrete time-varying systems.The algorithm uses H∞ estimator to minimize the worst possible amplification from disturbances to estimate errors,and H_ index to maximize the minimum effect of faults on the residual output of the filter.This approach is applied to the MEMS-based INS/GPS.And simulation results show that the new algorithm can reduce the effect of unknown disturbances and has a high sensitivity to faults.展开更多
A performance assisted enhancement Kalman filtering algorithm(PAE-KF) for GPS/INS integration navigation in urban areas was presented in this work. The aim of this PAE-KF algorithm was to prevent "deep contaminat...A performance assisted enhancement Kalman filtering algorithm(PAE-KF) for GPS/INS integration navigation in urban areas was presented in this work. The aim of this PAE-KF algorithm was to prevent "deep contamination" caused by error GPS data. This filtering algorithm effectively combined fault estimation of raw GPS data and nonholonomic constraint of vehicle. In fault estimation, a change point detection algorithm based on abrupt change model was proposed. Statistical tool was then used to infer the future bound of GPS data, which can detect faults in GPS raw data. If any kinds of faults were detected, dead reckoning mechanism begins to compute current position. Nonholonomic constraint condition of vehicle was used to estimate velocity of vehicle and change point detection was added into classic Kalman filtering structure. Experiment on vehicle shows that even when the GPS signals are unavailable for a period of time, this method can also output high accuracy data.展开更多
Several new MEMS Inertial Measurement Unit(IMU) sensor products have been released recently with improved performance,which have the potential to support much higher precision applications.New MEMS IMUs include the Na...Several new MEMS Inertial Measurement Unit(IMU) sensor products have been released recently with improved performance,which have the potential to support much higher precision applications.New MEMS IMUs include the NavChip from InterSense,the Nav440 from Crossbow,the Landmark30/40 from GTI,the SDI500 from Systron Donner.Since they are new in the market,currently there is limited information about their error characterization which however is important for the construction of proper error models for their integration with other sensors such as GPS.This paper will investigate the error characterization of two new MEMS IMU sensors,namely the NavChip and Nav440,using Allan variance technique.In addition to identifying different error terms,different stochastic error modeling methods,such as Gauss-Markov(GM) and Autoregressive(AR) processes,will also be investigated to assess the MEMS IMU sensor biases.Investigation to integrate new MEMS IMU sensors with Precise Point Positioning(PPP) will also be conducted to address the re-convergence issues.展开更多
In view of the problems existing in GPS, a non-gyroscope DR is introduced. The operating principle and the algorithm of the GPS/DR device are also presented. By operating measured data synthetically, linear observatio...In view of the problems existing in GPS, a non-gyroscope DR is introduced. The operating principle and the algorithm of the GPS/DR device are also presented. By operating measured data synthetically, linear observation equations are obtained for the information fusion algorithm. This approach avoids model error due to linearizing nonlinear observation equations in the conventional algorithm, so that the stability of information fusion algorithm is improved and computation expenses are reduced. Field running experiments show that satisfactory accuracy can be obtained by the proposed navigation model and algorithm for the non-gyroscope GPS/DR device.展开更多
基金supported by China Postdoctoral Science Foundation(2023M741882)the National Natural Science Foundation of China(62103222,62273195)。
文摘In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.
基金supported by the National Natural Science Foundation of China (60535010)
文摘A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.
基金This project was supported by the National Natural Science Foundation of China (40125013 &40376011)
文摘A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAEAKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstra- ted that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter.
文摘Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper proposes a robust adaptive UKF algorithm based on Support Vector Regression(SVR).The algorithm combines the advantages of support vector regression with small samples,nonlinear learning ability and online estimation capability of adaptive algorithm based on innovation.Firstly,the SVR model is trained by using the innovation in the sliding window,and the new innovation is monitored.If the deviation between the estimated innovation and the measured innovation exceeds a given threshold,then measured innovation will be replaced by the predicted innovation,and then the processed innovation is used to calculate the measurement noise covariance matrix using the adaptive estimation algorithm.Simulation experiments and measured data experiments show that SVRUKF is significantly better than the traditional UKF,robust UKF and adaptive UKF algorithms for the case where the covariance matrix is unknown and the measured values have outliers.
基金supported by the National Natural Science Foundationof China (60902055)
文摘In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault tolerance of global optimal fusion algorithm are the key problems to deal with. Based on theoretical analysis of the influencing factors of federated filtering fault tolerance, global fault-tolerant fusion algorithm and information sharing algorithm are proposed based on fuzzy assessment. It achieves intelligent fault-tolerant structure with two-stage and feedback, including real-time fault detection in sub-filters, and fault-tolerant fusion and information sharing in main filter. The simulation results demonstrate that the algorithm can effectively improve fault-tolerant ability and ensure relatively high positioning precision of integrated navigation system when a subsystem having gradual changing fault.
基金supported by the National Natural Science Foundation of China(6063403060702066)+1 种基金the Aerospace Science Foundation(20090853013)Fundmental Research Foundation of NWPU(JC201015),Soaring Star of NWPU
文摘In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential residual Chi-square test and applies to fault detection of an integrated navigation system.The simulation result shows that the algorithm can accurately detect the fault information of global positioning system(GPS),eliminate the influence of false alarm and missed detection on filter,and enhance fault tolerance of integrated navigation systems.
基金supported by the National Natural Science Foundation of China(61873275,61703419,425317829).
文摘High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important role in the performance evaluation of the navigation system.Traditional filter estimation methods usually assume that the measurement noise conforms to the Gaussian distribution,without considering the influence of the pollution introduced by the GNSS signal,which is susceptible to external interference.To address this problem,a high-precision filter estimation method using Gaussian process regression(GPR)is proposed to enhance the prediction and estimation capability of the unscented quaternion estimator(USQUE)to improve the navigation accuracy.Based on the advantage of the GPR machine learning function,the estimation performance of the sliding window for model training is measured.This method estimates the output of the observation information source through the measurement window and realizes the robust measurement update of the filter.The combination of GPR and the USQUE algorithm establishes a robust mechanism framework,which enhances the robustness and stability of traditional methods.The results of the trajectory simulation experiment and SINS/GNSS car-mounted tests indicate that the strategy has strong robustness and high estimation accuracy,which demonstrates the effectiveness of the proposed method.
基金Project(60535010) supported by the National Nature Science Foundation of China
文摘To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-Gaussian error models,a new algorithm called the federated unscented particle filtering(FUPF) algorithm was introduced.In this algorithm,the unscented particle filter(UPF) served as the local filter,the federated filter was used to fuse outputs of all local filters,and the global filter result was obtained.Because the algorithm was not confined to the assumption of Gaussian noise,it was of great significance to integrated navigation systems described by the non-Gaussian noise.The proposed algorithm was tested in a vehicle's maneuvering trajectory,which included six flight phases:climbing,level flight,left turning,level flight,right turning and level flight.Simulation results are presented to demonstrate the improved performance of the FUPF over conventional federated unscented Kalman filter(FUKF).For instance,the mean of position-error decreases from(0.640×10-6 rad,0.667×10-6 rad,4.25 m) of FUKF to(0.403×10-6 rad,0.251×10-6 rad,1.36 m) of FUPF.In comparison of the FUKF,the FUPF performs more accurate in the SINS/CNS/GPS system described by the nonlinear/non-Gaussian error models.
基金the Astronautic Technology Foundation (HTZC0405)
文摘In view of the problem that the current single-antenna GPS attitude determination system can only determine the body attitude when the sideslip angle is zero and the multiantenna GPS/SINS integrated navigation system is of large volume, high cost, and complex structure, this approach is presented to determine the attitude based on vector space with single-antenna GPS and accelerometers in the micro inertial measurement unit (MIMU). It can provide real-time and accurate attitude information. Subsequently, the single-antenna GPS/SINS integrated navigation system is designed based on the combination of position, velocity, and attitude. Finally the semi- physical simulations of single-antenna GPS attitude determination system and single-antenna GPS/SINS integrated navigation system are carried out. The simulation results, based on measured data, show that the single-antenna GPS/SINS system can provide more accurate navigation information compared to the GPS/SINS system, based on the combination of position and velocity. Furthermore, the single-antenna GPS/SINS system is characteristic of lower cost and simpler structure. It provides the basis for the application of a single-antenna GPS/SINS integrated navigation system in a micro aerial vehicle (MAV).
基金Projects(90820302, 60805027, 61175064) supported by the National Natural Science Foundation of ChinaProject(2011ssxt231) supported by the Master Degree Thesis Innovation Project Foundation of Central South University, China+1 种基金Project(200805330005) supported by the Research Fund for the Doctoral Program of Higher Education, ChinaProject(2011FJ4043) supported by the Academician Foundation of Hunan Province, China
文摘A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design.
基金supported by the National Natural Science Foundation of China(60774002)the Foundation of New Century Excellent Talents in University of China(NCET-05-0177)
文摘Since any disturbance and fault may lead to significant performance degradation in practical dynamical systems,it is essential for a system to be robust to disturbances but sensitive to faults.For this purpose,this paper proposes a robust fault-detection filter for linear discrete time-varying systems.The algorithm uses H∞ estimator to minimize the worst possible amplification from disturbances to estimate errors,and H_ index to maximize the minimum effect of faults on the residual output of the filter.This approach is applied to the MEMS-based INS/GPS.And simulation results show that the new algorithm can reduce the effect of unknown disturbances and has a high sensitivity to faults.
基金Projects(90820302,60805027)supported by the National Natural Science Foundation of ChinaProject(2011BAK15B06)supported by the National Science and Technology Support Program,China+1 种基金Project(2013M541003)supported by the China Postdoctoral Science FoundationProject(2012YQ090208)supported by the Special-Funded Program on National Key Scientific Instruments and Equipment Development
文摘A performance assisted enhancement Kalman filtering algorithm(PAE-KF) for GPS/INS integration navigation in urban areas was presented in this work. The aim of this PAE-KF algorithm was to prevent "deep contamination" caused by error GPS data. This filtering algorithm effectively combined fault estimation of raw GPS data and nonholonomic constraint of vehicle. In fault estimation, a change point detection algorithm based on abrupt change model was proposed. Statistical tool was then used to infer the future bound of GPS data, which can detect faults in GPS raw data. If any kinds of faults were detected, dead reckoning mechanism begins to compute current position. Nonholonomic constraint condition of vehicle was used to estimate velocity of vehicle and change point detection was added into classic Kalman filtering structure. Experiment on vehicle shows that even when the GPS signals are unavailable for a period of time, this method can also output high accuracy data.
基金Excellent talents Program of Liaoning Province(LR2011007)supported by the Natural Sciences and Engineering Research Council(NSERC)of Canada and Tecterra as well as Program for Liaoning Excellent Talents in University,China~~
文摘Several new MEMS Inertial Measurement Unit(IMU) sensor products have been released recently with improved performance,which have the potential to support much higher precision applications.New MEMS IMUs include the NavChip from InterSense,the Nav440 from Crossbow,the Landmark30/40 from GTI,the SDI500 from Systron Donner.Since they are new in the market,currently there is limited information about their error characterization which however is important for the construction of proper error models for their integration with other sensors such as GPS.This paper will investigate the error characterization of two new MEMS IMU sensors,namely the NavChip and Nav440,using Allan variance technique.In addition to identifying different error terms,different stochastic error modeling methods,such as Gauss-Markov(GM) and Autoregressive(AR) processes,will also be investigated to assess the MEMS IMU sensor biases.Investigation to integrate new MEMS IMU sensors with Precise Point Positioning(PPP) will also be conducted to address the re-convergence issues.
文摘In view of the problems existing in GPS, a non-gyroscope DR is introduced. The operating principle and the algorithm of the GPS/DR device are also presented. By operating measured data synthetically, linear observation equations are obtained for the information fusion algorithm. This approach avoids model error due to linearizing nonlinear observation equations in the conventional algorithm, so that the stability of information fusion algorithm is improved and computation expenses are reduced. Field running experiments show that satisfactory accuracy can be obtained by the proposed navigation model and algorithm for the non-gyroscope GPS/DR device.