期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
基于AdaBoost.M2-ISSA-ELM算法的电力变压器故障诊断方法 被引量:3
1
作者 王艳 王寅初 +3 位作者 赵洪山 李伟 连洪钵 康磊 《电力自动化设备》 EI CSCD 北大核心 2024年第9期205-211,218,共8页
为提高电力变压器故障诊断精度,将集成学习和群体智能优化算法相结合,提出一种电力变压器故障诊断方法。使用极限学习机(ELM)作为基学习算法,构建集成学习框架下的基分类器,并针对ELM模型性能受参数初始化影响较大、易陷入局部最优问题... 为提高电力变压器故障诊断精度,将集成学习和群体智能优化算法相结合,提出一种电力变压器故障诊断方法。使用极限学习机(ELM)作为基学习算法,构建集成学习框架下的基分类器,并针对ELM模型性能受参数初始化影响较大、易陷入局部最优问题,引入基于正弦优化的改进麻雀搜索算法(ISSA)优化相关参数,提高基分类器的分类性能。使用改进的自适应增强(AdaBoost.M2)算法构建集成学习模型,扩展基分类器的输出,并引入伪损失函数替代传统AdaBoost算法中的加权误差,以增强集成分类器综合表达能力,得到基于AdaBoost.M2-ISSA-ELM算法的电力变压器故障诊断模型,进一步提高模型识别精度。通过909组油中溶解气体分析(DGA)样本对所提方法进行实例分析,结果表明该方法具有较好的诊断精度和分类性能,能够实现电力变压器故障类型的准确识别。 展开更多
关键词 电力变压器 故障诊断 集成学习 智能优化算法 极限学习机
在线阅读 下载PDF
基于放电电压平台研究的蓄电池寿命状态评估 被引量:2
2
作者 成庶 吕壮壮 +1 位作者 刘畅 向超群 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第3期1266-1274,共9页
为解决传统动车组镍镉蓄电池的返修方法导致部分蓄电池在触发返修条件前已性能劣化,同时大量已达返修标准的蓄电池性能并未过度衰退的问题,设计单体镍镉蓄电池全寿命加速老化实验并获取相关实验数据。首先,采用集成经验模态方法建立单... 为解决传统动车组镍镉蓄电池的返修方法导致部分蓄电池在触发返修条件前已性能劣化,同时大量已达返修标准的蓄电池性能并未过度衰退的问题,设计单体镍镉蓄电池全寿命加速老化实验并获取相关实验数据。首先,采用集成经验模态方法建立单体电池全寿命健康状态类别划分模型,然后运用离散小波变换消除放电电压平台数据的奇异值,进而利用极限学习机算法预测蓄电池寿命状态,最终实现对蓄电池全生命周期寿命的准确预测与健康状态评估功能。实验结果表明:相较于传统的蓄电池寿命阈值分类方法,运用集成经验模态建立的健康状态类别划分模型能有效避免蓄电池寿命末端出现误警情况。作为融合算法模型输入的放电电压平台数据易获取,基于离散小波变换的数据预处理方法可提升算法准确率近3%,最终可达到96%~98%。此外,相对于传统的神经网络模型,融合算法模型不涉及迭代,因而能兼顾算法的预测精度与计算效能。蓄电池识别健康状态的F1值为0.976 3,识别老化阶段的F1值为0.950 9,识别故障阶段的F1值为0.939 394。相较于传统的依据动车组运营里程和使用年限进而决定蓄电池是否返修的方法,融合算法模型提供了显著的评判标准,能判别蓄电池是否应该返修,并有效地识别蓄电池的健康状态,降低了动车组的运营成本,保障动车组运营安全,为电池寿命评判和检修策略的优化提供参考。 展开更多
关键词 寿命评估 集成经验模态分解 离散小波变换 极限学习机 放电电压平台 在线检测
在线阅读 下载PDF
基于Adaboost-INGO-HKELM的变压器故障辨识 被引量:8
3
作者 谢国民 江海洋 《电力系统保护与控制》 EI CSCD 北大核心 2024年第5期94-104,共11页
针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning ... 针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning machine, HKELM)进行训练学习,考虑到HKELM模型易受参数影响,所以利用北方苍鹰优化算法(northern goshawk optimization, NGO)对其参数进行寻优。但由于NGO收敛速度较慢,易陷入局部最优,引入切比雪夫混沌映射、择优学习、自适应t分布联合策略对其进行改进。同时为了提高模型整体的准确率,通过结合Adaboost集成算法,构建Adaboost-INGO-HKELM变压器故障辨识模型。最后,将提出的Adaboost-INGO-HKELM模型与未进行降维处理的INGO-HKELM模型、Isomap-INGO-KELM模型、Adaboost-Isomap-GWO-SVM等7种模型的测试准确率进行对比。提出的Adaboost-INGO-HKELM模型的准确率可达96%,均高于其他模型,验证了该模型对变压器故障辨识具有很好的效果。 展开更多
关键词 故障诊断 油浸式变压器 Adaboost集成算法 切比雪夫混沌映射 混合核极限学习机 等度量映射
在线阅读 下载PDF
基于IDT-SAE-ELM的煤矿电缆短路故障识别方法
4
作者 王清亮 李泓朴 +1 位作者 李书超 王伟峰 《西安科技大学学报》 北大核心 2024年第6期1205-1217,共13页
针对现有方法无法有效提取煤矿电缆短路故障深层特征而导致故障识别准确率和类型判定精度低的问题,提出了一种基于IDT-SAE-ELM的短路故障识别方法。首先采用IDT技术对传统SAE模型进行改进,以提高其高效捕获故障样本深层特征的能力;然后... 针对现有方法无法有效提取煤矿电缆短路故障深层特征而导致故障识别准确率和类型判定精度低的问题,提出了一种基于IDT-SAE-ELM的短路故障识别方法。首先采用IDT技术对传统SAE模型进行改进,以提高其高效捕获故障样本深层特征的能力;然后利用Adam算法优化IDT-SAE模型参数,实现了从原始电流信号自动获取短路故障特征量;最后利用ELM模型替代Softmax构造故障分类器,以提高SAE模型对特征差异性小的故障类型辨识能力,实现对煤矿电缆短路故障的识别与类型的智能判定。以煤矿电网实际参数进行短路故障仿真,分别利用Loss曲线与T-分布随机近邻嵌入算法可视化分析所提方法的抗过拟合能力与短路故障深层特征挖掘能力,采用准确率和精度对所提方法进行评价,结果表明:所提方法相较于传统SAE具有更好的故障特征提取能力和抗过拟合能力;所提方法对电缆短路故障的识别准确率稳定在99%左右,相较于RF、BPNN、ELM等人工智能方法,准确率分别提高了7.47%、5.82%、5.42%;在严重噪声干扰下,所提方法短路故障识别准确率始终保持在98.75%以上,有效提高了煤矿电缆短路故障识别准确率和类型判定精度,能够为越级跳闸原因判别、短路事故的分析与处理提供重要依据。 展开更多
关键词 煤矿 短路故障 堆栈自编码器 极限学习机 Dropout集成技术
在线阅读 下载PDF
基于集成SAO优化互相关熵极限学习机模型的变压器故障诊断方法 被引量:5
5
作者 孙世明 岑红星 +3 位作者 白建民 冯雪松 焦昆 马文涛 《电测与仪表》 北大核心 2024年第9期56-64,共9页
针对基于传统机器学习的变压器故障诊断方法在数据不平衡、训练数据集存在离群值等条件下稳健性弱和泛化能力不强等问题,提出一种稳健集成学习模型用于实现电力变压器的高精度故障诊断。首先针对离群值对模型稳健性的影响,将互相关熵损... 针对基于传统机器学习的变压器故障诊断方法在数据不平衡、训练数据集存在离群值等条件下稳健性弱和泛化能力不强等问题,提出一种稳健集成学习模型用于实现电力变压器的高精度故障诊断。首先针对离群值对模型稳健性的影响,将互相关熵损失(correntropy loss,CL)引入极限学习机(extreme learning machine,ELM)框架并应用梯度法获得最优解,以构建稳健学习模型CLELM,并利用雪消融优化器(snow ablation optimizer,SAO)优化CLELM的隐含层权重和偏差,以进一步改进其性能。其次,为了增强模型的泛化能力,将多个SAO-CLELM进行加权融合以构成稳健集成学习模型。最后,针对变压器故障数据集不平衡问题,采用合成少数类过采样技术对数据进行扩充,并应用平衡化后的数据训练集成SAO-CLELM模型以实现故障诊断。在两种故障测试集下对所提集成SAO-CLELM模型的故障诊断性能进行了验证,实验结果表明所提模型能获得准确的故障分类结果,说明其具有较高的稳健性和泛化性。 展开更多
关键词 电力变压器 故障诊断 集成学习 极限学习机 互相关熵损失 雪消融优化器
在线阅读 下载PDF
基于融合健康因子和集成极限学习机的锂离子电池SOH在线估计 被引量:2
6
作者 屈克庆 董浩 +3 位作者 毛玲 赵晋斌 杨建林 李芬 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第3期263-272,共10页
锂离子电池健康状态(SOH)的在线估计对电池管理系统的安全稳定运行至关重要.为克服传统基于数据驱动的锂离子电池SOH估计方法训练时间长、计算量大、调试过程复杂的问题,提出一种基于融合健康因子和集成极限学习机的锂离子电池SOH估计方... 锂离子电池健康状态(SOH)的在线估计对电池管理系统的安全稳定运行至关重要.为克服传统基于数据驱动的锂离子电池SOH估计方法训练时间长、计算量大、调试过程复杂的问题,提出一种基于融合健康因子和集成极限学习机的锂离子电池SOH估计方法.该方法通过dQ/dV和dT/dV曲线分析,筛选出与电池SOH相关性较高的数据区间进行多维健康特征提取,并对其进行主成分分析降维处理得到间接健康因子;利用极限学习机的随机学习算法建立间接健康因子和SOH之间的非线性映射关系.在此基础上,针对单一模型输出不稳定的特点,提出一种集成极限学习机模型,通过对估计结果设置可信度评价规则剔除单一极限学习机不可靠的输出,从而提高锂离子电池SOH的估计精度.使用NASA和牛津大学的锂离子电池老化数据集对该方法进行验证,结果表明该方法的平均绝对百分比误差小于1%,具有较高的准确性和可靠性. 展开更多
关键词 锂离子电池 健康因子 集成极限学习机 健康状态在线估计
在线阅读 下载PDF
基于集成神经网络和改进极限学习机的矿井移动机器人故障检测
7
作者 郑伦川 梁新元 袁乖宁 《金属矿山》 CAS 北大核心 2024年第6期159-164,共6页
矿井移动机器人作为一种自主运动的智能设备,广泛应用于采矿、输送和装载等工作中。然而,由于其在恶劣环境下运行,往往长时间无法得到检修维护,导致故障频发,影响了井下安全高效生产。如何及时准确地对机器人进行故障检测,提高其可靠性... 矿井移动机器人作为一种自主运动的智能设备,广泛应用于采矿、输送和装载等工作中。然而,由于其在恶劣环境下运行,往往长时间无法得到检修维护,导致故障频发,影响了井下安全高效生产。如何及时准确地对机器人进行故障检测,提高其可靠性和生产效率成为一个亟待解决的问题。提出了一种基于集成神经网络和改进极限学习机的矿井移动机器人故障检测方法。该方法融合了多个神经网络模型,并通过改进极限学习机算法来提高检测精度和效率。首先,基于集成学习思想将传统卷积神经网络、递归神经网络和自编码器等多个预训练模型集成为一个更强大的检测模型。其次,在极限学习机的基础上引入了自适应权重调整策略,提高了算法的自适应能力和准确性。将所提出的方法在某矿山数据集上进行了试验,结果表明:该方法在检测区分度较低或异常数据较多的情况下性能优异,有助于实现高精度和高效率的故障检测。 展开更多
关键词 矿井移动机器人 故障检测 集成神经网络 改进极限学习机
在线阅读 下载PDF
基于樽海鞘群极限学习机的进/发一体化性能寻优控制模型研究
8
作者 于子洋 王晨 +2 位作者 杜宪 聂聆聪 孙希明 《推进技术》 EI CAS CSCD 北大核心 2024年第5期236-249,共14页
为充分发挥航空推进系统的性能,提高性能寻优控制的实时性,将樽海鞘群算法(SSA)与极限学习机(ELM)相结合,基于进/发一体化部件级模型建立数据集,提出一种基于SSA-ELM的数据驱动模型。将该建模方法与广义回归神经网络(GRNN)、BP神经网络(... 为充分发挥航空推进系统的性能,提高性能寻优控制的实时性,将樽海鞘群算法(SSA)与极限学习机(ELM)相结合,基于进/发一体化部件级模型建立数据集,提出一种基于SSA-ELM的数据驱动模型。将该建模方法与广义回归神经网络(GRNN)、BP神经网络(BPNN)和极限学习机(ELM)比较,结果表明,相比于BPNN,ELM,GRNN,SSA-ELM用于预测可以使安装推力的均方根误差(RMSE)分别降低7.41%,17.01%,72.57%,安装油耗的RMSE分别降低4.32%,19.41%,66.77%,具有更高的预测精度。将基于SSA-ELM的数据驱动模型作为机载模型应用到性能寻优控制,结果表明,该机载模型能够维持理想的寻优效果。针对最大安装推力模式开展实时性分析,该机载模型相比于进/发一体化部件级模型,平均计算时间由184.05 ms缩短至1.357 ms,实时性得到显著改善,大大提高了寻优效率。 展开更多
关键词 航空发动机 进/发一体化 樽海鞘群优化算法 极限学习机 数据驱动模型 性能寻优控制
在线阅读 下载PDF
基于多源数据的铝土矿浮选生产指标集成建模方法 被引量:6
9
作者 曹斌芳 谢永芳 +2 位作者 阳春华 桂卫华 王晓丽 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第9期1252-1261,共10页
在长流程浮选过程中,生产指标难以在线检测,造成操作不及时,影响系统的稳定运行.本文提出了一种基于多源数据的铝土矿浮选过程生产指标集成建模方法.首先结合浮选机理和现场工人经验,分析影响和反映生产指标的多源数据(生产数据和泡沫... 在长流程浮选过程中,生产指标难以在线检测,造成操作不及时,影响系统的稳定运行.本文提出了一种基于多源数据的铝土矿浮选过程生产指标集成建模方法.首先结合浮选机理和现场工人经验,分析影响和反映生产指标的多源数据(生产数据和泡沫图像特征数据);然后分别建立各生产指标预测子模型和同步误差补偿子模型;最后采用信息熵和智能协调策略分别构建精矿品位和尾矿品位的集成预测模型.工业验证和工况分析表明,本文集成建模方法具有良好的预测性能和较强的泛化性,为基于生产指标的浮选过程操作参数控制和全流程优化奠定基础. 展开更多
关键词 泡沫特征 生产指标 集成建模 偏最小二乘 正则极限学习机
在线阅读 下载PDF
基于RF-ELM模型的边坡稳定性预测研究 被引量:6
10
作者 邵良杉 马寒 温廷新 《中国安全生产科学技术》 CAS CSCD 北大核心 2015年第3期93-98,共6页
为实现对边坡稳定性的有效预测,将极限学习机算法与旋转森林算法相结合,并依据影响边坡稳定性的六项重要因素,建立了边坡稳定性预测的RF-ELM预测模型。该模型是以极限学习机算法为基分类器,以旋转森林算法为框架的集成学习模型,利用UCI... 为实现对边坡稳定性的有效预测,将极限学习机算法与旋转森林算法相结合,并依据影响边坡稳定性的六项重要因素,建立了边坡稳定性预测的RF-ELM预测模型。该模型是以极限学习机算法为基分类器,以旋转森林算法为框架的集成学习模型,利用UCI数据库中三组数据集验证了该集成模型确实提高了ELM的预测性能。将RF-ELM模型应用于边坡稳定性的预测问题中,结合39组工程实例数据进行预测实验,结果表明该模型具有较高的预测精度,可有效的对边坡稳定性进行预测。 展开更多
关键词 边坡稳定性 极限学习机 旋转森林 分类器集成
在线阅读 下载PDF
舰艇对空中来袭目标意图的预判方法 被引量:5
11
作者 赵捍东 马焱 +3 位作者 张玮 张磊 李营 李旭东 《中国舰船研究》 CSCD 北大核心 2018年第1期133-139,共7页
[目的]为使舰艇能在短时间内正确预判空中来袭目标的意图,提出应用异质集成学习器解决该模糊不确定性分类问题。[方法]首先选取极限学习机、决策树、Skohonen神经网络和学习矢量化(LVQ)神经网络4种子学习器,使用集成学习结合策略构建异... [目的]为使舰艇能在短时间内正确预判空中来袭目标的意图,提出应用异质集成学习器解决该模糊不确定性分类问题。[方法]首先选取极限学习机、决策树、Skohonen神经网络和学习矢量化(LVQ)神经网络4种子学习器,使用集成学习结合策略构建异质集成学习器;然后利用该集成学习器训练测试训练集100次,得到该分类实验平均准确率和计算时间。为提高准确率,进行了集成修剪,剔除"劣质"的LVQ神经网络,重新构建效率更高的异质集成学习器,其实验结果具有极高的精度,但计算耗时长。为此,提出对Skohonen神经网络子分类器做"线下训练、线上调用"的改进。[结果]仿真实验表明,从探测到空中目标到预判出各来袭目标意图总用时为4.972 s,预判精度为99.93%,很好地满足了精度和实时性要求。[结论]该研究为作战决策提供了一种新颖而有效的方法,同时也为小样本分类识别问题提供了一种较好的实现途径。 展开更多
关键词 集成学习 极限学习机 决策树 Skohonen神经网络 LVQ神经网络 集成修剪
在线阅读 下载PDF
基于ELMR-SVMR的海水水质预警模型研究 被引量:3
12
作者 张颖 李梅 +1 位作者 高倩倩 施佳 《大连理工大学学报》 EI CAS CSCD 北大核心 2016年第2期185-192,共8页
海水水质预警对海洋环境监控和保护有着重要的意义.极限学习机回归和支持向量机回归(extreme learning machine regression-support vector machine regression,ELMRSVMR)集成预警模型采用预测与评价相结合的方式,实现对未来海水富营养... 海水水质预警对海洋环境监控和保护有着重要的意义.极限学习机回归和支持向量机回归(extreme learning machine regression-support vector machine regression,ELMRSVMR)集成预警模型采用预测与评价相结合的方式,实现对未来海水富营养化状况综合预警的目的.其中SVMR方法用于构建海水富营养化评价模型;ELMR用于对未来一段时间的水质状况进行综合预测,ELMR的预测结果作为评价模型的输入变量.集成模型的可靠性直接影响预警的有效性,ELMR-SVMR的可靠性通过分析ELMR预测误差对SVMR评价模型的灵敏度得到.将各参变量的预测误差结果作为评价模型的灵敏度影响参量,通过灵敏度计算可获得对ELMR-SVMR模型的灵敏度评价.通过与其他方法的实验对比及分析,验证了该区域范围内所建ELMR-SVMR预警模型的有效性,为探索建立有效的海水水质预警模型提供了一种新途径. 展开更多
关键词 集成预警模型 极限学习机 支持向量机 海水富营养化 灵敏度分析
在线阅读 下载PDF
长江上游径流混沌动力特性及其集成预测研究 被引量:10
13
作者 周建中 彭甜 《长江科学院院报》 CSCD 北大核心 2018年第10期1-9,共9页
针对长江上游干流主要站点月径流时间序列强非线性和非平稳特征,引入混沌理论和Ada Boost.RT集成极限学习机方法对其月径流时间序列进行分析和预测。首先,以流域径流非线性动力系统混沌特征参数辨识为切入点,研究并发现了流域内在特性... 针对长江上游干流主要站点月径流时间序列强非线性和非平稳特征,引入混沌理论和Ada Boost.RT集成极限学习机方法对其月径流时间序列进行分析和预测。首先,以流域径流非线性动力系统混沌特征参数辨识为切入点,研究并发现了流域内在特性作用下月径流时间序列动力响应的混沌现象,推求了月径流时间序列相空间重构的延迟时间和最佳嵌入维数,在此基础上,以重构相空间时间序列作为输入变量,引入基于自适应动态阈值的改进Ada Boost.RT算法改进极限学习机模型的学习性能,得到最佳的混沌集成学习月径流时间序列预测模型。实例研究结果表明,所提方法和模型能够显著提高单一极限学习机模型的泛化性和稳定性,从而获得更优越的预报性能。 展开更多
关键词 径流预报 混动动力特性 相空间重构 极限学习机 集成预测
在线阅读 下载PDF
应用多参数融合与ELM的自动机故障诊断 被引量:4
14
作者 安邦 潘宏侠 +1 位作者 赵雄鹏 张青青 《机械设计与制造》 北大核心 2017年第9期141-144,共4页
考虑到自动机工作环境复杂,各部件相互作用时间短,冲击性强从而导致各种响应信号相互叠加,敏感特征参量难以确定的问题,提出了一种应用多参数融合与ELM相结合的自动机故障诊断方法。首先,对自动机故障信号计算广义分形维数,在此基础上... 考虑到自动机工作环境复杂,各部件相互作用时间短,冲击性强从而导致各种响应信号相互叠加,敏感特征参量难以确定的问题,提出了一种应用多参数融合与ELM相结合的自动机故障诊断方法。首先,对自动机故障信号计算广义分形维数,在此基础上提取盒维数、信息维数、关联维数作为故障特征参量;然后引入信息熵模型,对自动机故障信号提取功率谱熵、奇异谱熵、特征空间谱熵作为特征参量来描述信号状态在频域、时域、时频域的能量变化;最后将特征参量输入到极限学习机中(ELM)进行分类。实验结果表明多参数融合能全面准确地反映故障信息,极限学习机学习速度快、结构简单,具有很好的故障分类效果。 展开更多
关键词 多参数融合 广义分形维数 信息熵 极限学习机 自动机 故障诊断
在线阅读 下载PDF
用模糊积分集成重复训练极限学习机的数据分类方法 被引量:4
15
作者 翟俊海 张素芳 周昭一 《小型微型计算机系统》 CSCD 北大核心 2018年第6期1223-1227,共5页
用极限学习机重复训练单隐含层前馈神经网络可得到不同的网络模型.受极限学习机这一特点的启发,提出了一种用模糊积分集成重复训练极限学习机的数据分类方法.该方法分为3步:第1步,用极限学习机重复训练单隐含层前馈神经网络.在训练时,... 用极限学习机重复训练单隐含层前馈神经网络可得到不同的网络模型.受极限学习机这一特点的启发,提出了一种用模糊积分集成重复训练极限学习机的数据分类方法.该方法分为3步:第1步,用极限学习机重复训练单隐含层前馈神经网络.在训练时,不仅输入层权值和隐含层结点的偏置随机生成,隐含层结点的个数也随机生成.第2步,用软最大化函数将训练的单隐含层前馈神经网络的输出变换为后验概率分布.第3步,用模糊积分集成重复训练的单隐含层前馈神经网络,并用于数据分类.提出的方法具有2个优点:1)网络模型具有良好的多样性,理由是重复训练得到的单隐含层前馈神经网络具有不同的结构和不同的参数.2)具有良好的泛化能力,理由是模糊积分能很好地刻画基本分类器之间的交互作用.此外,提出的方法提供了一种网络结构选择的替代方案,利用提出的方法解决实际问题时,可以不用考虑网络结构选择问题.与其他2个算法在10个数据集上进行了实验比较,实验结果及对实验结果的统计分析显示提出的算法在分类精度上优于这2种算法. 展开更多
关键词 数据分类 极限学习机 重复训练 模糊积分 集成
在线阅读 下载PDF
基于ELM-EMD-LSTM组合模型的船舶运动姿态预测 被引量:17
16
作者 张彪 彭秀艳 高杰 《船舶力学》 EI CSCD 北大核心 2020年第11期1413-1421,共9页
在随机变动的海洋环境中,采用单一预测模型对船舶运动进行预报,预报值有时出现大的随机波动,预测误差超出安全限,对船舶运动控制和决策带来严重后果。本文提出了基于极限学习机(ELM)、经验模态分解(EMD)和长短期记忆(LSTM)神经网络的组... 在随机变动的海洋环境中,采用单一预测模型对船舶运动进行预报,预报值有时出现大的随机波动,预测误差超出安全限,对船舶运动控制和决策带来严重后果。本文提出了基于极限学习机(ELM)、经验模态分解(EMD)和长短期记忆(LSTM)神经网络的组合预测模型,对船舶运动姿态进行预测。首先,通过ELM模型预测方法进行船舶运动姿态的初始预测,然后采用EMD算法分解初始预测残差得到有限个本征模函数(IMF),并利用LSTM模型学习各IMF分量的短期时序规律进行预测,将各IMF分量的预测值相加得到残差预测值;最后将初始预测值与残差预测值组合得到最终的预测结果。仿真结果表明:与单一的LSTM模型和ELM-LSTM模型相比,该组合预测模型的平均绝对误差及均方根误差均为最小,预测精度更高,是一种更为有效的船舶运动姿态预测方法。 展开更多
关键词 组合模型 极限学习机 经验模态分解 船舶运动姿态预测 长短期记忆神经网络
在线阅读 下载PDF
基于极限学习机与模糊积分融合的机器人地面分类 被引量:1
17
作者 李强 寇建华 +1 位作者 徐贺 白冰 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2017年第4期617-624,共8页
为了提高移动机器人地面分类的准确率,采用奇异值分解和功率谱密度估计两种方法对振动信号进行特征提取。针对极限学习机的隐层节点冗余问题,给出改进的算法,并采用改进的极限学习机对地面分类。针对模糊积分参数耗时和积分函数不确定... 为了提高移动机器人地面分类的准确率,采用奇异值分解和功率谱密度估计两种方法对振动信号进行特征提取。针对极限学习机的隐层节点冗余问题,给出改进的算法,并采用改进的极限学习机对地面分类。针对模糊积分参数耗时和积分函数不确定的问题,给出改进的方法,并基于2种特征采用改进的模糊积分对2个改进的极限学习机进行融合。在四轮移动机器人左前轮轮臂上安装三向加速度计和z向传声器,使之在沙、碎石、草、土、沥青地面上分别以5种速度行驶,采集车轮与地面相互作用的加速度和声压信号。根据改进的极限学习机和模糊积分融合算法,分别对每种速度下的5种地面进行分类,分类平均准确率为95.22%。实验验证了算法的有效性。 展开更多
关键词 移动机器人 地面分类 振动信号 极限学习机 模糊积分融合 奇异值分解 功率谱密度
在线阅读 下载PDF
融合多特征与互信息选择集成多核极限学习机的影像分类方法 被引量:3
18
作者 杨素妨 曾红春 《遥感信息》 CSCD 北大核心 2021年第1期56-60,共5页
针对影像分类结果的类间差异性与准确性难以平衡的问题,提出一种融合多特征与互信息选择集成多核极限学习机的影像分类方法。该方法首先利用最小噪声分离提取影像的光谱特征,考虑到高分辨率影像局部细节信息清晰,利用LBP算子提取影像的... 针对影像分类结果的类间差异性与准确性难以平衡的问题,提出一种融合多特征与互信息选择集成多核极限学习机的影像分类方法。该方法首先利用最小噪声分离提取影像的光谱特征,考虑到高分辨率影像局部细节信息清晰,利用LBP算子提取影像的局部纹理信息,采用泛化性能好的核极限学习机训练多个弱分类器;然后,通过引入相关性准则描述准确性,冗余性准则描述差异性,将选择性集成多核极限学习机问题转化为变量选择问题;最后,利用基于互信息的最大相关最小冗余准则,对生成的多核极限学习机进行选择,从而实现影像分类结果差异性与准确性的平衡。文章采用高分二号数据实验,总体分类精度和Kappa系数分别为92.03%、0.9。分析结果表明,该方法能够利用多种特征的分类优势,进而有效改善了高分二号影像的分类结果。 展开更多
关键词 融合多特征 互信息 选择性集成 极限学习机 影像分类
在线阅读 下载PDF
小波分解和组合模型相融合的网络流量网络预测 被引量:1
19
作者 包萍 《激光杂志》 CAS CSCD 北大核心 2014年第12期124-127,共4页
为了提高网络流量预测的准确性,提出一种小波分解和组合模型相融合的网络流量预测预测模型。首先采用小波分析对网络流量进行分解,得到网络流量的趋势序列和波动序列,然后分别采用自回归差分滑动平均模型和极限学习机对它们进行建模和预... 为了提高网络流量预测的准确性,提出一种小波分解和组合模型相融合的网络流量预测预测模型。首先采用小波分析对网络流量进行分解,得到网络流量的趋势序列和波动序列,然后分别采用自回归差分滑动平均模型和极限学习机对它们进行建模和预测,最后采用仿真实验测试组合模型的性能。仿真结果表明,相对于其它网络流量预测模型,组合预测模型提高了网络流量预测精度,降低了预测误差更小。 展开更多
关键词 网络流量 小波分解 极限学习机 自回归差分滑动平均模型
在线阅读 下载PDF
基于极速学习的Choquet模糊积分分类器
20
作者 陈爱霞 张春琴 《河北大学学报(自然科学版)》 CAS 北大核心 2019年第4期337-341,共5页
在交互环境下,模糊积分分类器具有良好的分类性能.如何确定在属性集幂集上定义的模糊测度是模糊积分分类器中的一个关键问题.当属性的个数增加时,计算复杂度呈指数级增长.为了解决这一问题,借鉴极速学习机算法中权重向量随机确定的思想... 在交互环境下,模糊积分分类器具有良好的分类性能.如何确定在属性集幂集上定义的模糊测度是模糊积分分类器中的一个关键问题.当属性的个数增加时,计算复杂度呈指数级增长.为了解决这一问题,借鉴极速学习机算法中权重向量随机确定的思想,提出了ELM-Choquet模糊积分分类器.实验结果表明,和Choquet模糊积分分类器相比,该算法具有较优的分类性能. 展开更多
关键词 模糊测度 模糊积分 CHOQUET模糊积分 极速学习机 遗传算法
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部