To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and co...To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.展开更多
An 'Integrated Device and Circuit simulator' for thin film (0.05-0.2μm) submicron (0.5μm) and deep submicron (0.15, 0.25,0.35μm) CMOS/ SOI integrated circuit has been developed. This simulator has been used...An 'Integrated Device and Circuit simulator' for thin film (0.05-0.2μm) submicron (0.5μm) and deep submicron (0.15, 0.25,0.35μm) CMOS/ SOI integrated circuit has been developed. This simulator has been used for design and fabrication and physical library development of thin film submicron and deep submicron CMOS/ SOI integrated circuit.展开更多
随着移动通信技术的发展演进,6G(6th-Generation)网络作为新一代智能化数字信息基础设施,将不再仅聚焦信号的传输和复现,更需要基于电磁传播过程实现对周围环境的高效感知和理解,从而获取信道语义知识,协助智能通信体的预测、决策、波...随着移动通信技术的发展演进,6G(6th-Generation)网络作为新一代智能化数字信息基础设施,将不再仅聚焦信号的传输和复现,更需要基于电磁传播过程实现对周围环境的高效感知和理解,从而获取信道语义知识,协助智能通信体的预测、决策、波束成形等.因此,相较于传统信道而言,赋予无线信道模型对物理环境的语义理解、重构、表达能力,已成为智能无线信道模型的重要特征.本文提出了一种无线信道语义的分析和建模方法,将信道语义定义为状态语义、行为语义和事件语义3种层级,分别对应信道瞬态多径、信道时变轨迹和信道拓扑结构.此外,基于车载通感一体化(Integrated Sensing And Communication,ISAC)信道测量系统,开展了28 GHz下面向信道语义表征的无线信道测量,基于实测数据对信道语义进行解构、标识、建模,重点分析了3种不同语义下的信道多径分布特性,完成了语义导向的信道生成,结果表明信道语义模型能够在生成较准确信道的同时,表达更丰富的语义信息.本文工作是在语义层面上探索智能信道建模的新方法,通过深入挖掘无线信道的内在语义特征,促进通信系统在理解和认知环境方面的能力,从而提高通信效率和质量.展开更多
基金supported by the National Natural Science Foundation of China(61931015,62071335,62250024)the Natural Science Foundation of Hubei Province of China(2021CFA002)+1 种基金the Fundamental Research Funds for the Central Universities of China(2042022dx0001)the Science and Technology Program of Shenzhen(JCYJ20170818112037398).
文摘To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.
文摘An 'Integrated Device and Circuit simulator' for thin film (0.05-0.2μm) submicron (0.5μm) and deep submicron (0.15, 0.25,0.35μm) CMOS/ SOI integrated circuit has been developed. This simulator has been used for design and fabrication and physical library development of thin film submicron and deep submicron CMOS/ SOI integrated circuit.
文摘随着移动通信技术的发展演进,6G(6th-Generation)网络作为新一代智能化数字信息基础设施,将不再仅聚焦信号的传输和复现,更需要基于电磁传播过程实现对周围环境的高效感知和理解,从而获取信道语义知识,协助智能通信体的预测、决策、波束成形等.因此,相较于传统信道而言,赋予无线信道模型对物理环境的语义理解、重构、表达能力,已成为智能无线信道模型的重要特征.本文提出了一种无线信道语义的分析和建模方法,将信道语义定义为状态语义、行为语义和事件语义3种层级,分别对应信道瞬态多径、信道时变轨迹和信道拓扑结构.此外,基于车载通感一体化(Integrated Sensing And Communication,ISAC)信道测量系统,开展了28 GHz下面向信道语义表征的无线信道测量,基于实测数据对信道语义进行解构、标识、建模,重点分析了3种不同语义下的信道多径分布特性,完成了语义导向的信道生成,结果表明信道语义模型能够在生成较准确信道的同时,表达更丰富的语义信息.本文工作是在语义层面上探索智能信道建模的新方法,通过深入挖掘无线信道的内在语义特征,促进通信系统在理解和认知环境方面的能力,从而提高通信效率和质量.