A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems....A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.展开更多
The aim of this paper is to solve the problems of multitarget tracking in clutter. Firstly, the data association of measurement-to-target is formulated as an integer programming problem. Through using the linear progr...The aim of this paper is to solve the problems of multitarget tracking in clutter. Firstly, the data association of measurement-to-target is formulated as an integer programming problem. Through using the linear programming (LP) based branchand-bound method and adjusting the constraint conditions, an optimal set integer programming (OSIP) algorithm is then proposed for tracking multiple non-maneuvering targets in clutter. For the case of maneuvering targets, this paper introduces the OSIP algorithm into the filtering step of the interacting multiple model (IMM) algorithm resulting in the IMM based on OSIP algorithm. Extensive Monte Carlo simulations show that the presented algorithms can obtain superior estimations even in the case of high density noises.展开更多
As far as the minimal spanning tree problem for the digraph with asymmetric weightsis concerned, an explicit integer programming model is proposed, which could be solved successfullyusing the integer programming packa...As far as the minimal spanning tree problem for the digraph with asymmetric weightsis concerned, an explicit integer programming model is proposed, which could be solved successfullyusing the integer programming packages such as LINDO, and furthermore this model is extendedinto the stochastic version, that is, the minimal spanning tree problem for the digraph with theweights is not constant but random variables. Several algorithms are also developed to solve themodels. Finally, a numerical demonstration is given.展开更多
An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorith...An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.展开更多
International freedom of the air(traffic rights)is a key resource for airlines to carry out international air transport business.An efficient and reasonable traffic right resource allocation within a country between a...International freedom of the air(traffic rights)is a key resource for airlines to carry out international air transport business.An efficient and reasonable traffic right resource allocation within a country between airlines can affect the quality of a country’s participation in international air transport.In this paper,a multi-objective mixed-integer programming model for traffic rights resource allocation is developed to minimize passenger travel mileages and maximize the number of traffic rights resources allocated to hub airports and competitive carriers.A hybrid heuristic algorithm combining the genetic algorithm and the variable neighborhood search is devised to solve the model.The results show that the optimal allocation scheme aligns with the principle of fairness,indicating that the proposed model can play a certain guiding role in and provide an innovative perspective on traffic rights resource allocation in various countries.展开更多
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove...The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.展开更多
According to the previous achievement, the task assignment under the constraint of timing continuity for a cooperative air combat is studied. An extensive task assignment scenario with the background of the cooperativ...According to the previous achievement, the task assignment under the constraint of timing continuity for a cooperative air combat is studied. An extensive task assignment scenario with the background of the cooperative air combat is proposed. The utility and time of executing a task as well as the continuous combat ability are defined. The concept of the matching method of weapon and target is modified based on the analysis of the air combat scenario. The constraint framework is also redefined according to a new objective function. The constraints of timing and continuity are formulated with a new method, at the same time, the task assignment and integer programming models of the cooperative combat are established. Finally, the assignment problem is solved using the integrated linear programming software and the simulation shows that it is feasible to apply this modified model in the cooperative air combat for tasks cooperation and it is also efficient to optimize the resource assignment.展开更多
Unmanned aerial vehicle(UAV) resource scheduling means to allocate and aggregate the available UAV resources depending on the mission requirements and the battlefield situation assessment.In previous studies,the mod...Unmanned aerial vehicle(UAV) resource scheduling means to allocate and aggregate the available UAV resources depending on the mission requirements and the battlefield situation assessment.In previous studies,the models cannot reflect the mission synchronization;the targets are treated respectively,which results in the large scale of the problem and high computational complexity.To overcome these disadvantages,a model for UAV resource scheduling under mission synchronization is proposed,which is based on single-objective non-linear integer programming.And several cooperative teams are aggregated for the target clusters from the available resources.The evaluation indices of weapon allocation are referenced in establishing the objective function and the constraints for the issue.The scales of the target clusters are considered as the constraints for the scales of the cooperative teams to make them match in scale.The functions of the intersection between the "mission time-window" and the UAV "arrival time-window" are introduced into the objective function and the constraints in order to describe the mission synchronization effectively.The results demonstrate that the proposed expanded model can meet the requirement of mission synchronization,guide the aggregation of cooperative teams for the target clusters and control the scale of the problem effectively.展开更多
The circle geometric constraint model (CGCM) was put forward for resolving the open-pit mine ore-matching problems (OMOMP). By adopting the approaches of graph theory, block model of blasted piles was abstracted i...The circle geometric constraint model (CGCM) was put forward for resolving the open-pit mine ore-matching problems (OMOMP). By adopting the approaches of graph theory, block model of blasted piles was abstracted into a set of nodes and directed edges, which were connected together with other nodes in the range of circle constraints, to describe the mining sequence. Also, the constructing method of CGCM was introduced in detail. The algorithm of CGCM has been realized in the DIM1NE system, and applied to a short-term (5 d) program calculation for ore-matching of a cement limestone mine in Hebei Province, China. The applications show that CGCM can well describe the mining sequence of ore blocks and its mining geometric constraints in the process of mining blasted piles. This model, which is applicable for resolving OMOMP under complicated geometric constraints with accurate results, provides effective ways to solve the problems of open-pit ore-matching.展开更多
This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the ...This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the total distance. This problem exists widely in real-life logistics distribution process.We propose a hybrid column generation algorithm(HCGA) for the OVRPTW, embedding both exact algorithm and metaheuristic. In HCGA, a label setting algorithm and an intelligent algorithm are designed to select columns from small and large subproblems, respectively. Moreover, a branch strategy is devised to generate the final feasible solution for the OVRPTW. The computational results show that the proposed algorithm has faster speed and can obtain the approximate optimal solution of the problem with 100 customers in a reasonable time.展开更多
The agile manufacturing is a new conception for rap id reaction to the consumers. One of its implements is establishing a virtual ente rprise (VE) around the task, where each manufacturing unit, or sub-task, probab ly...The agile manufacturing is a new conception for rap id reaction to the consumers. One of its implements is establishing a virtual ente rprise (VE) around the task, where each manufacturing unit, or sub-task, probab ly have at least one resource, or referred to as suppliers. Because each manufac turing unit might be carried out in different geographical places that implies t his probably gives rise to transportation cost, the selection of resources for e ach manufacturing unit must considers not only the manufacturing price of each r esource but also the transfer cost between any two potential resources. This pap er discusses the resource reconfiguration problem with two hypotheses: 1. Permit s one or more resources to attend the same manufacturing unit as long as the tot al cost can reach its least; 2. The freight contains the initial part, that is t he freight concave. Indeed, these hypotheses are much meaningful in the real wor ld. Furthermore, to simplify the solution for this problem, we propose two conce pts: assembly tree (AT) and combinatorial mode base (CMB). Formally an AT is a c omplete production line, which can ensure the parts equilibrium, and its capacit y is subjected to the least capacity of every resources and every path in it. In the end, we propose an implicit enumeration algorithm (IEA) by the use of CMB, including it is a heuristic algorithm for integer programming (HAIP) by the use of AT. The IEA can be outlined that for a determined combinatorial mode, if it h as not enumerated, we use the HAIP to get an near optima and corresponding CMB, marking every combinatorial mode extended from the CMB as enumerated, other cont inue a new iteration. The HAIP can be outlined that for a determined combinatori al mode, there are some determined number of AT, we select an AT with the le ast slope, and select the volume of this AT to its ultimate within its capacity, iterates this doing until the needed volume reached. In the end, we conclude th is paper and prospect the deep research based on GA thought.展开更多
To minimize the total transmit power for multicast service in an orthogonal frequency division multiplexing(OFDM) downlink system,resource allocation algorithms that adaptively allocate subcarriers and bits are prop...To minimize the total transmit power for multicast service in an orthogonal frequency division multiplexing(OFDM) downlink system,resource allocation algorithms that adaptively allocate subcarriers and bits are proposed.The proposed algorithms select users with good channel conditions for each subcarrier to reduce the transmit power,while guaranteeing each user's instantaneous minimum rate requirement.The resource allocation problem is first formulated as an integer programming(IP) problem,and then,a full search algorithm that achieves an optimal solution is presented.To reduce the computation load,a suboptimal algorithm is proposed.This suboptimal algorithm decouples the joint resource allocation problem by separating subcarrier and bit allocation.Greedy-like algorithms are employed in both procedures.Simulation results illustrate that the proposed algorithms can significantly reduce the transmit power compared with the conventional multicast approach and the performance of the suboptimal algorithm is close to the optimum.展开更多
In recent years,using message ferries as mechanical carriers of data has been shown to be an effective way to collect information in sparse wireless sensor networks.As the sensors are far away from each other in such ...In recent years,using message ferries as mechanical carriers of data has been shown to be an effective way to collect information in sparse wireless sensor networks.As the sensors are far away from each other in such highly partitioned scenario,a message ferry needs to travel a long route to access all the sensors and carry the data collected from the sensors to the sink.Typically,practical constraints(e.g.,the energy)preclude a ferry from visiting all sensors in a single tour.In such case,the ferry can only access part of the sensors in each tour and move back to the sink to get the energy refilled.So,the energy-constrained ferry route design(ECFRD)problem is discussed,which leads to the optimization problem of minimizing the total route length of the ferry,while keeping the route length of each tour below a given constraint.The ECFRD problem is proved to be NP-hard problem,and the integer linear programming(ILP)formulation is given.After that,efficient heuristic algorithms are proposed to solve this problem.The experimental results show that the performances of the proposed algorithms are effective in practice compared to the optimal solution.展开更多
This paper investigates the fault detection problem for discrete event systems (DESs) which can be modeled by partially observed Petri nets (POPNs). To overcome the problem of low diagnosability in the POPN online fau...This paper investigates the fault detection problem for discrete event systems (DESs) which can be modeled by partially observed Petri nets (POPNs). To overcome the problem of low diagnosability in the POPN online fault diagnoser in current use, an improved online fault diagnosis algorithm that integrates generalized mutual exclusion constraints (GMECs) and integer linear programming (ILP) is proposed. Assume that the POPN structure and its initial markings are known, and the faults are modeled as unobservable transitions. First, the event sequence is observed and recorded. GMEC is used for elementary diagnosis of the system behavior, then the ILP problem of POPN is solved for further diagnosis. Finally, an example of a real DES to test the new fault diagnoser is analyzed. The proposed algorithm increases the diagnosability of the DES remarkably, and the effectiveness of the new algorithm integrating GMEC and ILP is verified.展开更多
Component reallocation(CR)is receiving increasing attention in many engineering systems with functionally interchangeable and unbalanced degradation components.This paper studies a CR and system replacement maintenanc...Component reallocation(CR)is receiving increasing attention in many engineering systems with functionally interchangeable and unbalanced degradation components.This paper studies a CR and system replacement maintenance policy of series repairable systems,which undergoes minimal repairs for each emergency failure of components,and considers constant downtime and cost of minimal repair,CR and system replacement.Two binary mixed integer nonlinear programming models are respectively established to determine the assignment of CR,and the uptime right before CR and system replacement with the objective of minimizing the system average maintenance cost and maximizing the system availability.Further,we derive the optimal uptime right before system replacement with maximization of the system availability,and then give the relationship between the system availability and the component failure rate.Finally,numerical examples show that the CR and system replacement maintenance policy can effectively reduce the system average maintenance cost and improve the system availability,and further give the sensitivity analysis and insights of the CR and system replacement maintenance policy.展开更多
As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in mult...As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.展开更多
基金Projects(50275150,61173052) supported by the National Natural Science Foundation of ChinaProject(14FJ3112) supported by the Planned Science and Technology of Hunan Province,ChinaProject(14B033) supported by Scientific Research Fund Education Department of Hunan Province,China
文摘A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.
基金supported by the National Natural Science Fundation of China (61203238 61134005+5 种基金 60921001 90916024 91116016)the National Basic Research Program of China (973 Program) (2012CB8212002012CB821201)the National Science Foundation for Postdoctoral Scientists of China (2012M520140)
文摘The aim of this paper is to solve the problems of multitarget tracking in clutter. Firstly, the data association of measurement-to-target is formulated as an integer programming problem. Through using the linear programming (LP) based branchand-bound method and adjusting the constraint conditions, an optimal set integer programming (OSIP) algorithm is then proposed for tracking multiple non-maneuvering targets in clutter. For the case of maneuvering targets, this paper introduces the OSIP algorithm into the filtering step of the interacting multiple model (IMM) algorithm resulting in the IMM based on OSIP algorithm. Extensive Monte Carlo simulations show that the presented algorithms can obtain superior estimations even in the case of high density noises.
文摘As far as the minimal spanning tree problem for the digraph with asymmetric weightsis concerned, an explicit integer programming model is proposed, which could be solved successfullyusing the integer programming packages such as LINDO, and furthermore this model is extendedinto the stochastic version, that is, the minimal spanning tree problem for the digraph with theweights is not constant but random variables. Several algorithms are also developed to solve themodels. Finally, a numerical demonstration is given.
基金supported by the Fundamental Research Funds for the Central Universities(K50511700004)the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)
文摘An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of Chinathe Civil Aviation Administration of China (U2333206).
文摘International freedom of the air(traffic rights)is a key resource for airlines to carry out international air transport business.An efficient and reasonable traffic right resource allocation within a country between airlines can affect the quality of a country’s participation in international air transport.In this paper,a multi-objective mixed-integer programming model for traffic rights resource allocation is developed to minimize passenger travel mileages and maximize the number of traffic rights resources allocated to hub airports and competitive carriers.A hybrid heuristic algorithm combining the genetic algorithm and the variable neighborhood search is devised to solve the model.The results show that the optimal allocation scheme aligns with the principle of fairness,indicating that the proposed model can play a certain guiding role in and provide an innovative perspective on traffic rights resource allocation in various countries.
基金Fundamental Research Funds for the Central Universities(2024JBZX038)National Natural Science F oundation of China(62076023)。
文摘The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.
基金supported by the National Natural Science Foundation of China(61472441)
文摘According to the previous achievement, the task assignment under the constraint of timing continuity for a cooperative air combat is studied. An extensive task assignment scenario with the background of the cooperative air combat is proposed. The utility and time of executing a task as well as the continuous combat ability are defined. The concept of the matching method of weapon and target is modified based on the analysis of the air combat scenario. The constraint framework is also redefined according to a new objective function. The constraints of timing and continuity are formulated with a new method, at the same time, the task assignment and integer programming models of the cooperative combat are established. Finally, the assignment problem is solved using the integrated linear programming software and the simulation shows that it is feasible to apply this modified model in the cooperative air combat for tasks cooperation and it is also efficient to optimize the resource assignment.
文摘Unmanned aerial vehicle(UAV) resource scheduling means to allocate and aggregate the available UAV resources depending on the mission requirements and the battlefield situation assessment.In previous studies,the models cannot reflect the mission synchronization;the targets are treated respectively,which results in the large scale of the problem and high computational complexity.To overcome these disadvantages,a model for UAV resource scheduling under mission synchronization is proposed,which is based on single-objective non-linear integer programming.And several cooperative teams are aggregated for the target clusters from the available resources.The evaluation indices of weapon allocation are referenced in establishing the objective function and the constraints for the issue.The scales of the target clusters are considered as the constraints for the scales of the cooperative teams to make them match in scale.The functions of the intersection between the "mission time-window" and the UAV "arrival time-window" are introduced into the objective function and the constraints in order to describe the mission synchronization effectively.The results demonstrate that the proposed expanded model can meet the requirement of mission synchronization,guide the aggregation of cooperative teams for the target clusters and control the scale of the problem effectively.
基金Project(2011AA060407) supported by the National High Technology Research and Development Program of ChinaProject(51074073) supported by the National Natural Science Foundation of China
文摘The circle geometric constraint model (CGCM) was put forward for resolving the open-pit mine ore-matching problems (OMOMP). By adopting the approaches of graph theory, block model of blasted piles was abstracted into a set of nodes and directed edges, which were connected together with other nodes in the range of circle constraints, to describe the mining sequence. Also, the constructing method of CGCM was introduced in detail. The algorithm of CGCM has been realized in the DIM1NE system, and applied to a short-term (5 d) program calculation for ore-matching of a cement limestone mine in Hebei Province, China. The applications show that CGCM can well describe the mining sequence of ore blocks and its mining geometric constraints in the process of mining blasted piles. This model, which is applicable for resolving OMOMP under complicated geometric constraints with accurate results, provides effective ways to solve the problems of open-pit ore-matching.
基金supported by the National Natural Science Foundation of China (61963022,51665025,61873328)。
文摘This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the total distance. This problem exists widely in real-life logistics distribution process.We propose a hybrid column generation algorithm(HCGA) for the OVRPTW, embedding both exact algorithm and metaheuristic. In HCGA, a label setting algorithm and an intelligent algorithm are designed to select columns from small and large subproblems, respectively. Moreover, a branch strategy is devised to generate the final feasible solution for the OVRPTW. The computational results show that the proposed algorithm has faster speed and can obtain the approximate optimal solution of the problem with 100 customers in a reasonable time.
文摘The agile manufacturing is a new conception for rap id reaction to the consumers. One of its implements is establishing a virtual ente rprise (VE) around the task, where each manufacturing unit, or sub-task, probab ly have at least one resource, or referred to as suppliers. Because each manufac turing unit might be carried out in different geographical places that implies t his probably gives rise to transportation cost, the selection of resources for e ach manufacturing unit must considers not only the manufacturing price of each r esource but also the transfer cost between any two potential resources. This pap er discusses the resource reconfiguration problem with two hypotheses: 1. Permit s one or more resources to attend the same manufacturing unit as long as the tot al cost can reach its least; 2. The freight contains the initial part, that is t he freight concave. Indeed, these hypotheses are much meaningful in the real wor ld. Furthermore, to simplify the solution for this problem, we propose two conce pts: assembly tree (AT) and combinatorial mode base (CMB). Formally an AT is a c omplete production line, which can ensure the parts equilibrium, and its capacit y is subjected to the least capacity of every resources and every path in it. In the end, we propose an implicit enumeration algorithm (IEA) by the use of CMB, including it is a heuristic algorithm for integer programming (HAIP) by the use of AT. The IEA can be outlined that for a determined combinatorial mode, if it h as not enumerated, we use the HAIP to get an near optima and corresponding CMB, marking every combinatorial mode extended from the CMB as enumerated, other cont inue a new iteration. The HAIP can be outlined that for a determined combinatori al mode, there are some determined number of AT, we select an AT with the le ast slope, and select the volume of this AT to its ultimate within its capacity, iterates this doing until the needed volume reached. In the end, we conclude th is paper and prospect the deep research based on GA thought.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2008AA01Z226)
文摘To minimize the total transmit power for multicast service in an orthogonal frequency division multiplexing(OFDM) downlink system,resource allocation algorithms that adaptively allocate subcarriers and bits are proposed.The proposed algorithms select users with good channel conditions for each subcarrier to reduce the transmit power,while guaranteeing each user's instantaneous minimum rate requirement.The resource allocation problem is first formulated as an integer programming(IP) problem,and then,a full search algorithm that achieves an optimal solution is presented.To reduce the computation load,a suboptimal algorithm is proposed.This suboptimal algorithm decouples the joint resource allocation problem by separating subcarrier and bit allocation.Greedy-like algorithms are employed in both procedures.Simulation results illustrate that the proposed algorithms can significantly reduce the transmit power compared with the conventional multicast approach and the performance of the suboptimal algorithm is close to the optimum.
基金Projects(61272139,61070199,61103182)supported by the National Natural Science Foundation of ChinaProject(2013ZX01028001-002)supported by the National Science and Technology Major Projects of China+1 种基金Project(2011AA01A103)supported by theNational High-Tech Research and Development Plan of ChinaProject(11JJ7003)supported by Hunan Provincial Natural ScienceFoundation of China
文摘In recent years,using message ferries as mechanical carriers of data has been shown to be an effective way to collect information in sparse wireless sensor networks.As the sensors are far away from each other in such highly partitioned scenario,a message ferry needs to travel a long route to access all the sensors and carry the data collected from the sensors to the sink.Typically,practical constraints(e.g.,the energy)preclude a ferry from visiting all sensors in a single tour.In such case,the ferry can only access part of the sensors in each tour and move back to the sink to get the energy refilled.So,the energy-constrained ferry route design(ECFRD)problem is discussed,which leads to the optimization problem of minimizing the total route length of the ferry,while keeping the route length of each tour below a given constraint.The ECFRD problem is proved to be NP-hard problem,and the integer linear programming(ILP)formulation is given.After that,efficient heuristic algorithms are proposed to solve this problem.The experimental results show that the performances of the proposed algorithms are effective in practice compared to the optimal solution.
基金supported by the National Natural Science Foundation of China(61473144)
文摘This paper investigates the fault detection problem for discrete event systems (DESs) which can be modeled by partially observed Petri nets (POPNs). To overcome the problem of low diagnosability in the POPN online fault diagnoser in current use, an improved online fault diagnosis algorithm that integrates generalized mutual exclusion constraints (GMECs) and integer linear programming (ILP) is proposed. Assume that the POPN structure and its initial markings are known, and the faults are modeled as unobservable transitions. First, the event sequence is observed and recorded. GMEC is used for elementary diagnosis of the system behavior, then the ILP problem of POPN is solved for further diagnosis. Finally, an example of a real DES to test the new fault diagnoser is analyzed. The proposed algorithm increases the diagnosability of the DES remarkably, and the effectiveness of the new algorithm integrating GMEC and ILP is verified.
基金supported by the National Natural Science Foundation of China(72101025,72271049)the Fundamental Research Funds for the Central Universities(FRF-TP-20-073A1)the China Postdoct oral Science Foundation(2021M690349)。
文摘Component reallocation(CR)is receiving increasing attention in many engineering systems with functionally interchangeable and unbalanced degradation components.This paper studies a CR and system replacement maintenance policy of series repairable systems,which undergoes minimal repairs for each emergency failure of components,and considers constant downtime and cost of minimal repair,CR and system replacement.Two binary mixed integer nonlinear programming models are respectively established to determine the assignment of CR,and the uptime right before CR and system replacement with the objective of minimizing the system average maintenance cost and maximizing the system availability.Further,we derive the optimal uptime right before system replacement with maximization of the system availability,and then give the relationship between the system availability and the component failure rate.Finally,numerical examples show that the CR and system replacement maintenance policy can effectively reduce the system average maintenance cost and improve the system availability,and further give the sensitivity analysis and insights of the CR and system replacement maintenance policy.
文摘As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.