A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems....A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.展开更多
An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorith...An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.展开更多
The rapid development of data communication in modern era demands secure exchange of information. Steganography is an established method for hiding secret data from an unauthorized access into a cover object in such a...The rapid development of data communication in modern era demands secure exchange of information. Steganography is an established method for hiding secret data from an unauthorized access into a cover object in such a way that it is invisible to human eyes. The cover object can be image, text, audio,or video. This paper proposes a secure steganography algorithm that hides a bitstream of the secret text into the least significant bits(LSBs) of the approximation coefficients of the integer wavelet transform(IWT) of grayscale images as well as each component of color images to form stego-images. The embedding and extracting phases of the proposed steganography algorithms are performed using the MATLAB software. Invisibility, payload capacity, and security in terms of peak signal to noise ratio(PSNR) and robustness are the key challenges to steganography. The statistical distortion between the cover images and the stego-images is measured by using the mean square error(MSE) and the PSNR, while the degree of closeness between them is evaluated using the normalized cross correlation(NCC). The experimental results show that, the proposed algorithms can hide the secret text with a large payload capacity with a high level of security and a higher invisibility. Furthermore, the proposed technique is computationally efficient and better results for both PSNR and NCC are achieved compared with the previous algorithms.展开更多
The aim of this paper is to solve the problems of multitarget tracking in clutter. Firstly, the data association of measurement-to-target is formulated as an integer programming problem. Through using the linear progr...The aim of this paper is to solve the problems of multitarget tracking in clutter. Firstly, the data association of measurement-to-target is formulated as an integer programming problem. Through using the linear programming (LP) based branchand-bound method and adjusting the constraint conditions, an optimal set integer programming (OSIP) algorithm is then proposed for tracking multiple non-maneuvering targets in clutter. For the case of maneuvering targets, this paper introduces the OSIP algorithm into the filtering step of the interacting multiple model (IMM) algorithm resulting in the IMM based on OSIP algorithm. Extensive Monte Carlo simulations show that the presented algorithms can obtain superior estimations even in the case of high density noises.展开更多
As far as the minimal spanning tree problem for the digraph with asymmetric weightsis concerned, an explicit integer programming model is proposed, which could be solved successfullyusing the integer programming packa...As far as the minimal spanning tree problem for the digraph with asymmetric weightsis concerned, an explicit integer programming model is proposed, which could be solved successfullyusing the integer programming packages such as LINDO, and furthermore this model is extendedinto the stochastic version, that is, the minimal spanning tree problem for the digraph with theweights is not constant but random variables. Several algorithms are also developed to solve themodels. Finally, a numerical demonstration is given.展开更多
The Hohenberg-Kohn theorem in density functional theory,as originally formulated,states that if an electron density,ρ_0(r),is the nondegenerate ground state density of an N-electron system with external potential v_0...The Hohenberg-Kohn theorem in density functional theory,as originally formulated,states that if an electron density,ρ_0(r),is the nondegenerate ground state density of an N-electron system with external potential v_0(r),where N is a展开更多
Carrier frequency offset (CFO) in MIMO-OFDM systems can be decoupled into two parts: fraction frequency offset (FFO) and integer frequency offset (IFO). The problem of IFO estimation is addressed and a new IFO ...Carrier frequency offset (CFO) in MIMO-OFDM systems can be decoupled into two parts: fraction frequency offset (FFO) and integer frequency offset (IFO). The problem of IFO estimation is addressed and a new IFO estimator based on the Bayesian philosophy is proposed. Also, it is shown that the Bayesian IFO estimator is optimal among all the IFO estimators. Furthermore, the Bayesian estimator can take advantage of oversampling so that better performance can be obtained. Finally, numerical results show the optimality of the Bayesian estimator and validate the theoretical analysis.展开更多
International freedom of the air(traffic rights)is a key resource for airlines to carry out international air transport business.An efficient and reasonable traffic right resource allocation within a country between a...International freedom of the air(traffic rights)is a key resource for airlines to carry out international air transport business.An efficient and reasonable traffic right resource allocation within a country between airlines can affect the quality of a country’s participation in international air transport.In this paper,a multi-objective mixed-integer programming model for traffic rights resource allocation is developed to minimize passenger travel mileages and maximize the number of traffic rights resources allocated to hub airports and competitive carriers.A hybrid heuristic algorithm combining the genetic algorithm and the variable neighborhood search is devised to solve the model.The results show that the optimal allocation scheme aligns with the principle of fairness,indicating that the proposed model can play a certain guiding role in and provide an innovative perspective on traffic rights resource allocation in various countries.展开更多
As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in mult...As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.展开更多
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove...The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.展开更多
According to the previous achievement, the task assignment under the constraint of timing continuity for a cooperative air combat is studied. An extensive task assignment scenario with the background of the cooperativ...According to the previous achievement, the task assignment under the constraint of timing continuity for a cooperative air combat is studied. An extensive task assignment scenario with the background of the cooperative air combat is proposed. The utility and time of executing a task as well as the continuous combat ability are defined. The concept of the matching method of weapon and target is modified based on the analysis of the air combat scenario. The constraint framework is also redefined according to a new objective function. The constraints of timing and continuity are formulated with a new method, at the same time, the task assignment and integer programming models of the cooperative combat are established. Finally, the assignment problem is solved using the integrated linear programming software and the simulation shows that it is feasible to apply this modified model in the cooperative air combat for tasks cooperation and it is also efficient to optimize the resource assignment.展开更多
Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate...Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate regularized matrix, and a singular decomposition method was used to generate regularization parameters. Numerical test results suggest that the regularized ambiguity float solution is more stable and reliable than the least-squares float solution. The mean square error matrix of the new method possesses a lower correlation than the variancecovariance matrix of the least-squares estimation. The size of the ambiguity search space is reduced and the search efficiency is improved. The success rate of the integer ambiguity searching process is improved significantly when the ambiguity resolution by using constraint equation method is used to determine the correct ambiguity integervector. The ambiguity resolution by using constraint equation method requires an initial input of the ambiguity float solution candidates which are obtained from the LAMBDA method in the new method. In addition, the observation time required to fix reliable integer ambiguities can he significantly reduced.展开更多
Unmanned aerial vehicle(UAV) resource scheduling means to allocate and aggregate the available UAV resources depending on the mission requirements and the battlefield situation assessment.In previous studies,the mod...Unmanned aerial vehicle(UAV) resource scheduling means to allocate and aggregate the available UAV resources depending on the mission requirements and the battlefield situation assessment.In previous studies,the models cannot reflect the mission synchronization;the targets are treated respectively,which results in the large scale of the problem and high computational complexity.To overcome these disadvantages,a model for UAV resource scheduling under mission synchronization is proposed,which is based on single-objective non-linear integer programming.And several cooperative teams are aggregated for the target clusters from the available resources.The evaluation indices of weapon allocation are referenced in establishing the objective function and the constraints for the issue.The scales of the target clusters are considered as the constraints for the scales of the cooperative teams to make them match in scale.The functions of the intersection between the "mission time-window" and the UAV "arrival time-window" are introduced into the objective function and the constraints in order to describe the mission synchronization effectively.The results demonstrate that the proposed expanded model can meet the requirement of mission synchronization,guide the aggregation of cooperative teams for the target clusters and control the scale of the problem effectively.展开更多
基金Projects(50275150,61173052) supported by the National Natural Science Foundation of ChinaProject(14FJ3112) supported by the Planned Science and Technology of Hunan Province,ChinaProject(14B033) supported by Scientific Research Fund Education Department of Hunan Province,China
文摘A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.
基金supported by the Fundamental Research Funds for the Central Universities(K50511700004)the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)
文摘An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.
文摘The rapid development of data communication in modern era demands secure exchange of information. Steganography is an established method for hiding secret data from an unauthorized access into a cover object in such a way that it is invisible to human eyes. The cover object can be image, text, audio,or video. This paper proposes a secure steganography algorithm that hides a bitstream of the secret text into the least significant bits(LSBs) of the approximation coefficients of the integer wavelet transform(IWT) of grayscale images as well as each component of color images to form stego-images. The embedding and extracting phases of the proposed steganography algorithms are performed using the MATLAB software. Invisibility, payload capacity, and security in terms of peak signal to noise ratio(PSNR) and robustness are the key challenges to steganography. The statistical distortion between the cover images and the stego-images is measured by using the mean square error(MSE) and the PSNR, while the degree of closeness between them is evaluated using the normalized cross correlation(NCC). The experimental results show that, the proposed algorithms can hide the secret text with a large payload capacity with a high level of security and a higher invisibility. Furthermore, the proposed technique is computationally efficient and better results for both PSNR and NCC are achieved compared with the previous algorithms.
基金supported by the National Natural Science Fundation of China (61203238 61134005+5 种基金 60921001 90916024 91116016)the National Basic Research Program of China (973 Program) (2012CB8212002012CB821201)the National Science Foundation for Postdoctoral Scientists of China (2012M520140)
文摘The aim of this paper is to solve the problems of multitarget tracking in clutter. Firstly, the data association of measurement-to-target is formulated as an integer programming problem. Through using the linear programming (LP) based branchand-bound method and adjusting the constraint conditions, an optimal set integer programming (OSIP) algorithm is then proposed for tracking multiple non-maneuvering targets in clutter. For the case of maneuvering targets, this paper introduces the OSIP algorithm into the filtering step of the interacting multiple model (IMM) algorithm resulting in the IMM based on OSIP algorithm. Extensive Monte Carlo simulations show that the presented algorithms can obtain superior estimations even in the case of high density noises.
文摘As far as the minimal spanning tree problem for the digraph with asymmetric weightsis concerned, an explicit integer programming model is proposed, which could be solved successfullyusing the integer programming packages such as LINDO, and furthermore this model is extendedinto the stochastic version, that is, the minimal spanning tree problem for the digraph with theweights is not constant but random variables. Several algorithms are also developed to solve themodels. Finally, a numerical demonstration is given.
文摘The Hohenberg-Kohn theorem in density functional theory,as originally formulated,states that if an electron density,ρ_0(r),is the nondegenerate ground state density of an N-electron system with external potential v_0(r),where N is a
基金supported by the National Science Fund for Distinguished Young Scholars (60725105)National"863"Program of China (2007AA01Z288)+1 种基金the sixth project of the Key Project of National Nature Science Foundation of China (60496316)Teaching Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE,the 111 Project (B08038).
文摘Carrier frequency offset (CFO) in MIMO-OFDM systems can be decoupled into two parts: fraction frequency offset (FFO) and integer frequency offset (IFO). The problem of IFO estimation is addressed and a new IFO estimator based on the Bayesian philosophy is proposed. Also, it is shown that the Bayesian IFO estimator is optimal among all the IFO estimators. Furthermore, the Bayesian estimator can take advantage of oversampling so that better performance can be obtained. Finally, numerical results show the optimality of the Bayesian estimator and validate the theoretical analysis.
基金supported by the National Natural Science Foundation of Chinathe Civil Aviation Administration of China (U2333206).
文摘International freedom of the air(traffic rights)is a key resource for airlines to carry out international air transport business.An efficient and reasonable traffic right resource allocation within a country between airlines can affect the quality of a country’s participation in international air transport.In this paper,a multi-objective mixed-integer programming model for traffic rights resource allocation is developed to minimize passenger travel mileages and maximize the number of traffic rights resources allocated to hub airports and competitive carriers.A hybrid heuristic algorithm combining the genetic algorithm and the variable neighborhood search is devised to solve the model.The results show that the optimal allocation scheme aligns with the principle of fairness,indicating that the proposed model can play a certain guiding role in and provide an innovative perspective on traffic rights resource allocation in various countries.
文摘As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.
基金Fundamental Research Funds for the Central Universities(2024JBZX038)National Natural Science F oundation of China(62076023)。
文摘The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.
基金supported by the National Natural Science Foundation of China(61472441)
文摘According to the previous achievement, the task assignment under the constraint of timing continuity for a cooperative air combat is studied. An extensive task assignment scenario with the background of the cooperative air combat is proposed. The utility and time of executing a task as well as the continuous combat ability are defined. The concept of the matching method of weapon and target is modified based on the analysis of the air combat scenario. The constraint framework is also redefined according to a new objective function. The constraints of timing and continuity are formulated with a new method, at the same time, the task assignment and integer programming models of the cooperative combat are established. Finally, the assignment problem is solved using the integrated linear programming software and the simulation shows that it is feasible to apply this modified model in the cooperative air combat for tasks cooperation and it is also efficient to optimize the resource assignment.
文摘Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate regularized matrix, and a singular decomposition method was used to generate regularization parameters. Numerical test results suggest that the regularized ambiguity float solution is more stable and reliable than the least-squares float solution. The mean square error matrix of the new method possesses a lower correlation than the variancecovariance matrix of the least-squares estimation. The size of the ambiguity search space is reduced and the search efficiency is improved. The success rate of the integer ambiguity searching process is improved significantly when the ambiguity resolution by using constraint equation method is used to determine the correct ambiguity integervector. The ambiguity resolution by using constraint equation method requires an initial input of the ambiguity float solution candidates which are obtained from the LAMBDA method in the new method. In addition, the observation time required to fix reliable integer ambiguities can he significantly reduced.
文摘Unmanned aerial vehicle(UAV) resource scheduling means to allocate and aggregate the available UAV resources depending on the mission requirements and the battlefield situation assessment.In previous studies,the models cannot reflect the mission synchronization;the targets are treated respectively,which results in the large scale of the problem and high computational complexity.To overcome these disadvantages,a model for UAV resource scheduling under mission synchronization is proposed,which is based on single-objective non-linear integer programming.And several cooperative teams are aggregated for the target clusters from the available resources.The evaluation indices of weapon allocation are referenced in establishing the objective function and the constraints for the issue.The scales of the target clusters are considered as the constraints for the scales of the cooperative teams to make them match in scale.The functions of the intersection between the "mission time-window" and the UAV "arrival time-window" are introduced into the objective function and the constraints in order to describe the mission synchronization effectively.The results demonstrate that the proposed expanded model can meet the requirement of mission synchronization,guide the aggregation of cooperative teams for the target clusters and control the scale of the problem effectively.