A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ...A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.展开更多
Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe...Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect.展开更多
Nanostructured BN and BN-Co films with Cu,Co,Au as the top electrodes,and Pt as the bottom electrodes were grown by magnetron sputtering.Both BN samples and BN-Co ones show bipolar resistive switching behaviors.For th...Nanostructured BN and BN-Co films with Cu,Co,Au as the top electrodes,and Pt as the bottom electrodes were grown by magnetron sputtering.Both BN samples and BN-Co ones show bipolar resistive switching behaviors.For the sample with active Cu as the top electrode,the formation and rupture of metallic Cu conductive filaments can explain the resistive switching behavior;for the other samples,the generation and annihilation of nitrogen vacancies under the electric stimuli may contribute to the occurrence of resistive switching.Taking advantage of the formed and broken Co-N bonds during resistive switching,the saturation magnetization of the BN-Co films can be modulated.Thus,it investigated the resistive switching behavior of BN and BN-Co materials in this work.Similar to that of oxide materials,the resistive switching behaviors of the nitrides may be attributed to the movement of cations or anions within the dielectric or electrodes during the application of voltage.Additionally,ion migration may lead to the formation or breaking of Co-N bonds,which can effectively regulate the magnetism of BN-Co materials.This study extends resistive switching materials to nitrides,enabling the regulation of magnetism along with resistance changes,thus providing insights for the design of novel voltage-controlled magnetic devices and achieving multi-functionality.展开更多
文摘A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.
基金National Key R&D Program of China(2021YFA0716304)Shanghai Science and Technology Programs(22511100300,23DZ2201500)。
文摘Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect.
文摘Nanostructured BN and BN-Co films with Cu,Co,Au as the top electrodes,and Pt as the bottom electrodes were grown by magnetron sputtering.Both BN samples and BN-Co ones show bipolar resistive switching behaviors.For the sample with active Cu as the top electrode,the formation and rupture of metallic Cu conductive filaments can explain the resistive switching behavior;for the other samples,the generation and annihilation of nitrogen vacancies under the electric stimuli may contribute to the occurrence of resistive switching.Taking advantage of the formed and broken Co-N bonds during resistive switching,the saturation magnetization of the BN-Co films can be modulated.Thus,it investigated the resistive switching behavior of BN and BN-Co materials in this work.Similar to that of oxide materials,the resistive switching behaviors of the nitrides may be attributed to the movement of cations or anions within the dielectric or electrodes during the application of voltage.Additionally,ion migration may lead to the formation or breaking of Co-N bonds,which can effectively regulate the magnetism of BN-Co materials.This study extends resistive switching materials to nitrides,enabling the regulation of magnetism along with resistance changes,thus providing insights for the design of novel voltage-controlled magnetic devices and achieving multi-functionality.