A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ...A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.展开更多
智慧园区新兴业务的信息采集及实时控制需要严格的时间同步作为前提,虚假数据注入攻击(false data injection attack,FDIA)对时间同步精度的影响不可忽视。如何通过电力线通信(power line communication,PLC)实现安全准确时间同步成为...智慧园区新兴业务的信息采集及实时控制需要严格的时间同步作为前提,虚假数据注入攻击(false data injection attack,FDIA)对时间同步精度的影响不可忽视。如何通过电力线通信(power line communication,PLC)实现安全准确时间同步成为当前研究的重要问题。该文首先构建考虑FDIA的PLC赋能智慧园区时间同步网络,通过改进卡尔曼滤波修正时间同步误差;其次,以误差最小化为目标,建立站点时间同步问题;最后,提出基于改进深度Q网络的时间同步路由选择算法。所提算法能够根据FDIA概率动态学习时间同步路由选择策略,从而提高对未知状态的泛化能力。仿真验证表明,所提方法不仅能够显著提升FDIA检测的安全性能,同时可有效改善时间同步精度。展开更多
文摘A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.
文摘智慧园区新兴业务的信息采集及实时控制需要严格的时间同步作为前提,虚假数据注入攻击(false data injection attack,FDIA)对时间同步精度的影响不可忽视。如何通过电力线通信(power line communication,PLC)实现安全准确时间同步成为当前研究的重要问题。该文首先构建考虑FDIA的PLC赋能智慧园区时间同步网络,通过改进卡尔曼滤波修正时间同步误差;其次,以误差最小化为目标,建立站点时间同步问题;最后,提出基于改进深度Q网络的时间同步路由选择算法。所提算法能够根据FDIA概率动态学习时间同步路由选择策略,从而提高对未知状态的泛化能力。仿真验证表明,所提方法不仅能够显著提升FDIA检测的安全性能,同时可有效改善时间同步精度。