在基于增强现实装配引导的复杂零/部件装配场景中,由于手部对零/部件的遮挡,导致零件位姿解算时产生较大的误差,甚至造成求解失败。目前针对手工装配零件的位姿估计算法在解决零件遮挡问题时没有考虑手部信息,使得位姿估计精度难以满足...在基于增强现实装配引导的复杂零/部件装配场景中,由于手部对零/部件的遮挡,导致零件位姿解算时产生较大的误差,甚至造成求解失败。目前针对手工装配零件的位姿估计算法在解决零件遮挡问题时没有考虑手部信息,使得位姿估计精度难以满足增强装配实际应用的要求。针对上述问题,提出了融合手部姿态的零件6D位姿估计算法,即HandICG算法。该算法将手部的姿态信息与迭代对应几何(Iterative Corresponding Geometry,ICG)算法进行融合,当发生手部遮挡时,将手部的姿态信息应用到零件姿态的求解中,从而显著提高手部遮挡情况下零件位姿估计的精度,实验表明,平均模型点距离(Average Distance of Model points,ADD)相关评价指标达到74.73%,是ICG算法的2.61倍。该算法显著提升了增强装配场景中零件位姿解算的准确性和鲁棒性。展开更多
基于点云的空间非合作目标位姿估计,常受到噪声影响.提出截断最小二乘估计与半定松弛(truncated least squares estimation and semidefinite relaxation,TEASER)与迭代最近点(iterative closest point,ICP)的结合算法,提升空间非合作...基于点云的空间非合作目标位姿估计,常受到噪声影响.提出截断最小二乘估计与半定松弛(truncated least squares estimation and semidefinite relaxation,TEASER)与迭代最近点(iterative closest point,ICP)的结合算法,提升空间非合作目标位姿估计精度与鲁棒性.该方法包括粗配准与精配准两个环节:在粗配准环节中,基于局部点云与模型点云的方向直方图特征(signature of histogram of orientation,SHOT)确定匹配对,利用TEASER算法求解初始位姿;在精配准环节中,可结合ICP算法优化位姿估计结果.北斗卫星仿真实验表明:在连续帧位姿估计中,噪声标准差为3倍点云分辨率时,基于TEASER的周期关键帧配准方法的平移误差小于3.33 cm,旋转误差小于2.18°;与传统ICP方法相比,平均平移误差与平均旋转误差均有所降低.这表明所提出的空间非合作目标位姿估计方法具有良好的精度和鲁棒性.展开更多
文摘在基于增强现实装配引导的复杂零/部件装配场景中,由于手部对零/部件的遮挡,导致零件位姿解算时产生较大的误差,甚至造成求解失败。目前针对手工装配零件的位姿估计算法在解决零件遮挡问题时没有考虑手部信息,使得位姿估计精度难以满足增强装配实际应用的要求。针对上述问题,提出了融合手部姿态的零件6D位姿估计算法,即HandICG算法。该算法将手部的姿态信息与迭代对应几何(Iterative Corresponding Geometry,ICG)算法进行融合,当发生手部遮挡时,将手部的姿态信息应用到零件姿态的求解中,从而显著提高手部遮挡情况下零件位姿估计的精度,实验表明,平均模型点距离(Average Distance of Model points,ADD)相关评价指标达到74.73%,是ICG算法的2.61倍。该算法显著提升了增强装配场景中零件位姿解算的准确性和鲁棒性。
文摘基于点云的空间非合作目标位姿估计,常受到噪声影响.提出截断最小二乘估计与半定松弛(truncated least squares estimation and semidefinite relaxation,TEASER)与迭代最近点(iterative closest point,ICP)的结合算法,提升空间非合作目标位姿估计精度与鲁棒性.该方法包括粗配准与精配准两个环节:在粗配准环节中,基于局部点云与模型点云的方向直方图特征(signature of histogram of orientation,SHOT)确定匹配对,利用TEASER算法求解初始位姿;在精配准环节中,可结合ICP算法优化位姿估计结果.北斗卫星仿真实验表明:在连续帧位姿估计中,噪声标准差为3倍点云分辨率时,基于TEASER的周期关键帧配准方法的平移误差小于3.33 cm,旋转误差小于2.18°;与传统ICP方法相比,平均平移误差与平均旋转误差均有所降低.这表明所提出的空间非合作目标位姿估计方法具有良好的精度和鲁棒性.