期刊文献+
共找到450篇文章
< 1 2 23 >
每页显示 20 50 100
基于DWT-CNN-Informer模型的液压支架压力多步长预测 被引量:1
1
作者 张传伟 张刚强 +1 位作者 路正雄 李林岳 《中国安全生产科学技术》 北大核心 2025年第4期57-63,共7页
为了实现液压支架压力多步长精准预测,提出1种基于DWT-CNN-Informer模型的压力多步长预测方法,该方法利用离散小波变换(discrete wavelet transform, DWT)将预处理后的压力时序数据分解为趋势项和周期项频率分量;各频率分量输入卷积神... 为了实现液压支架压力多步长精准预测,提出1种基于DWT-CNN-Informer模型的压力多步长预测方法,该方法利用离散小波变换(discrete wavelet transform, DWT)将预处理后的压力时序数据分解为趋势项和周期项频率分量;各频率分量输入卷积神经网络(CNN)模型提取频率特征;提取的频率特征输入Informer编码器,经位置编码和多头概率稀疏自注意力机制捕捉时序变化特征,并结合自注意力蒸馏减少特征冗余;将Informer解码器改为全连接层,直接输出各分量多步长预测结果;重构叠加各分量多步长预测结果得到液压支架压力多步长预测结果。研究结果表明:在预测步长分别为6,12,24时,DWT-CNN-Informer模型相比LSTM、Informer、CNN-Informer模型在平均绝对误差(MAE)、均方根误差(RMSE)、对称平均绝对百分比误差(SMAPE)指标上均表现出更高预测精度。研究结果为液压支架压力精准预测提供有效方法。 展开更多
关键词 液压支架压力 多步长预测 离散小波变换 CNN模型 informer模型
在线阅读 下载PDF
基于多任务Informer模型的船舶轨迹预测及行为识别研究
2
作者 李世刚 刘克中 +3 位作者 陈立家 周乃祺 周阳 黄嘉韬 《中国航海》 北大核心 2025年第3期157-165,共9页
为有效预判航行风险,并为船舶避碰、交通管理等决策提供重要依据,研究了一种基于多任务Informer模型的船舶轨迹预测及行为识别模型。该模型以Informer框架为基础,并引入多任务学习模式,通过设计多任务损失函数将船舶行为识别与轨迹预测... 为有效预判航行风险,并为船舶避碰、交通管理等决策提供重要依据,研究了一种基于多任务Informer模型的船舶轨迹预测及行为识别模型。该模型以Informer框架为基础,并引入多任务学习模式,通过设计多任务损失函数将船舶行为识别与轨迹预测并联训练,解决了AIS数据中船舶行为不准确无法作为模型输入的问题;在模型训练时,并设计基于同方差不确定性的损失函数自适应更新策略,自适应分配两个任务的损失权重。利用太仓航段水域中的真实AIS数据进行试验中多任务的Informer船舶轨迹预测模型在轨迹预测中的损失比LSTM和Informer模型分别降低了40.2%和14.7%;在行为识别任务中多任务模型的识别准确率比LSTM和Informer模型分别提升了11.7%和5.95%。表明了多任务模型能在有效提升船舶轨迹预测的性能的同时实现船舶对行为的准确识别。 展开更多
关键词 轨迹预测 行为识别 AIS数据 informer模型 多任务学习
在线阅读 下载PDF
基于融合劣化指标和VMD-Informer的水电机组劣化趋势预测
3
作者 宋阿妮 陈亦真 +2 位作者 詹云峰 李超顺 付波 《中国农村水利水电》 北大核心 2025年第5期90-96,共7页
水电机组长期运行在恶劣环境下,异常振动更加频繁,逐渐出现疲劳、磨损,导致机组性能劣化。为保障机组的安全稳定运行,需要准确直观地反映水电机组运行并预测机组未来劣化状况,为机组状态检修提供重要依据。提出了一种基于融合劣化指标和... 水电机组长期运行在恶劣环境下,异常振动更加频繁,逐渐出现疲劳、磨损,导致机组性能劣化。为保障机组的安全稳定运行,需要准确直观地反映水电机组运行并预测机组未来劣化状况,为机组状态检修提供重要依据。提出了一种基于融合劣化指标和VMD-Informer的机组劣化趋势预测方法。首先构建KAN健康模型拟合工况参数与振摆值之间的映射关系,然后通过对比模型输出值与实测振摆值在不同指标下的差异得到多个劣化序列,运用遗传算法对多个劣化序列进行寻优获取融合劣化指标,兼顾多个指标的优势,更为准确地反映机组劣化趋势。之后用变分模态分解(VMD)将融合劣化序列分解为多个分量,最后利用Informer预测模型对分解后的各个分量进行多步预测并重构得到最终的预测结果,从而实现对机组运行状况的准确评估和预测。实例分析表明,所提方法能够生成可靠的劣化趋势,同时在预测上能学习劣化趋势序列的长期趋势和局部特征,预测精度更高。 展开更多
关键词 水电机组 劣化评估 退化预测 Kolmogorov-Arnold Network 遗传算法 informer
在线阅读 下载PDF
基于RF-Informer模型的月径流遥相关预报
4
作者 李继清 谢宇韬 +1 位作者 徐学军 吴亮 《水资源保护》 北大核心 2025年第3期39-45,共7页
为延长中长期径流预报的预见期,提高预报精度,从物理成因上考虑径流的影响因素,在前期降水径流的基础上增加遥相关因子,通过随机森林(RF)模型进行因子选择,引入长时间序列预报中表现良好的Informer模型,构建了月径流预报的RF-Informer模... 为延长中长期径流预报的预见期,提高预报精度,从物理成因上考虑径流的影响因素,在前期降水径流的基础上增加遥相关因子,通过随机森林(RF)模型进行因子选择,引入长时间序列预报中表现良好的Informer模型,构建了月径流预报的RF-Informer模型,并利用该模型对雅砻江流域两河口、锦西、二滩3个水库的入库月径流进行了预报。结果表明:将遥相关因子引入流域月径流预报可以延长预见期,提高预报精度;相较于线性相关法,基于RF模型选择预报因子可以挖掘因子间非线性关系,提升预报效果;与RF-LSTM、RF-SVM、RF-BP神经网络模型相比,RF-Informer模型的误差最小,预报精度最高。 展开更多
关键词 月径流预报 遥相关因子 随机森林模型 informer模型 雅砻江流域
在线阅读 下载PDF
基于Informer模型的航班延误预测
5
作者 杨新湦 游超 朱承元 《科学技术与工程》 北大核心 2025年第19期8282-8288,共7页
为能更加精准预测不同时段的航班延误态势,选用美国亚特兰大机场2023年全年的运行数据与相关气象数据进行实验,提出基于相关系分析(correlation analysis,CA),主成分分析(principal components analysis,PCA)和Informer模型的CA-PCA-Inf... 为能更加精准预测不同时段的航班延误态势,选用美国亚特兰大机场2023年全年的运行数据与相关气象数据进行实验,提出基于相关系分析(correlation analysis,CA),主成分分析(principal components analysis,PCA)和Informer模型的CA-PCA-Informer航班延误预测模型,采用MAE(mean absolute error)和RMSE(root mean square error)作为模型的评价指标进行预测误差分析。结果表明,CA-PCA-Informer模型比简单的组合模型预测效果更好,与CA-PCA-LSTM和CA-PCA-GRU模型相比模型误差最低,MAE和RMSE分别降低了20.2%~20.7%和12.7%~14.1%;CA-PCA-Informer模型对预测步长为1 h时预测更为精准,该模型可以为决策者提供更加准确的航班延误态势以保证航班的高效运行。 展开更多
关键词 民航交通运输 航班延误预测 informer模型 主成分分析 神经网络
在线阅读 下载PDF
基于SDAE-EEMD降噪分解与改进Informer-BiLSTM模型的电力短期负荷预测方法
6
作者 蔡子龙 李嘉棋 +3 位作者 沈赋 王健 徐潇源 杨宇林 《电网技术》 北大核心 2025年第12期5009-5018,I0010-I0015,共16页
当前短期负荷预测模型在电价与负荷动态融合机制、负荷数据降噪与时序特征提取环节仍存在不足,制约了预测精度的提升。该文提出了一种集成电价及气象多维特征的短期电力负荷预测框架。首先,结合堆叠降噪自编码器(stacked denoising auto... 当前短期负荷预测模型在电价与负荷动态融合机制、负荷数据降噪与时序特征提取环节仍存在不足,制约了预测精度的提升。该文提出了一种集成电价及气象多维特征的短期电力负荷预测框架。首先,结合堆叠降噪自编码器(stacked denoising autoencoders,SDAE)和集合经验模态分解(ensemble empirical mode decomposition,EEMD)构建混合降噪分解模块,有效抑制负荷序列中的噪声干扰和模态混叠问题。EEMD将去噪后负荷序列分解为固有模态函数(intrinsic mode functions,IMFs)分量。其次,基于最大信息系数(maximum information coefficient,MIC)分析,将电价和气象特征分别融入高、低频IMFs分量中,实现差异化的特征动态融合。在此基础上,提出分频预测策略。针对高频分量,引入全局时间戳编码与稀疏注意力机制的改进Informer模型,以捕捉短时剧烈波动特征;对低频分量,采用Bi LSTM网络捕捉长期趋势与周期性。最后,基于澳大利亚国家电力市场公开数据集的实证结果表明,在平均绝对百分比误差和均方误差两个指标上均显著优于未引入电价特征或未采用分频策略的对比模型。通过高质量数据预处理、关键特征动态融合与针对性分频结构建模的协同优化,有效提升了短期负荷预测的精度与稳定性,可为电力市场动态定价机制下的负荷预测提供高效可靠的技术支撑。 展开更多
关键词 短期负荷预测 电价 SDAE EEMD 改进informer BiLSTM 分频预测
在线阅读 下载PDF
融合改进Informer与迁移学习的风电功率预测
7
作者 郭利进 孙淼 衡安阳 《太阳能学报》 北大核心 2025年第7期371-377,共7页
为克服风电功率序列的不稳定性导致预测精度低以及一些风电场历史数据有限的问题,提出一种特征交互Informer与迁移学习(FIITL)的风电功率预测模型。首先提出特征交互(FI)机制用双通道输入进一步提取信息,并将迁移学习(TL)引入到预测模型... 为克服风电功率序列的不稳定性导致预测精度低以及一些风电场历史数据有限的问题,提出一种特征交互Informer与迁移学习(FIITL)的风电功率预测模型。首先提出特征交互(FI)机制用双通道输入进一步提取信息,并将迁移学习(TL)引入到预测模型中,提出循环微调迁移学习,将模型从源监测站迁移到目标站,实现在有限历史数据情况下预测性能的提升。最后,通过与传统Informer模型及其他基线预测方法比较,FIITL模型展现了在有限数据情况下的性能优势。 展开更多
关键词 迁移学习 风电功率 预测 informer 特征交互
在线阅读 下载PDF
基于xLSTM-Informer的瓦斯浓度预测模型研究
8
作者 谭波 杨宽 +5 位作者 隋龙琨 左云飞 高赛逸 汤松鹭 高科天 贾锦祥 《工矿自动化》 北大核心 2025年第9期81-89,共9页
针对矿井瓦斯浓度预测任务中存在的多变量非线性耦合、长期依赖建模能力不足及模型滞后响应严重等问题,提出了一种融合扩展型长短期记忆网络(xLSTM)与Informer结构的复合型预测模型(xLSTM-Informer)。将xLSTM作为前置处理器,通过多层残... 针对矿井瓦斯浓度预测任务中存在的多变量非线性耦合、长期依赖建模能力不足及模型滞后响应严重等问题,提出了一种融合扩展型长短期记忆网络(xLSTM)与Informer结构的复合型预测模型(xLSTM-Informer)。将xLSTM作为前置处理器,通过多层残差记忆单元提取短时间窗口内的波动模式与变量间的耦合信息,并将其转换为结构化时序序列表征,再将处理后的时序表示输入至Informer主干结构中,进一步在扩展的时间窗口中提取全局依赖关系与稳定趋势,从而在保持细节响应的同时增强预测的时序连续性。基于井下束管监测系统采集的多源环境参数数据,开展特征重要性分析,选取O_(2)浓度、温度与风速3个指标作为输入变量,构建输入特征体系。利用xLSTM提取深层时序特征,并通过Informer中引入的ProbSparse自注意力机制,有效捕捉时序特征中的全局依赖关系,从而提升模型对非平稳性瓦斯浓度预测的能力。为评估xLSTM-Informer模型在瓦斯浓度预测任务中的性能优势,与xLSTM模型、Transformer模型及经典Informer模型进行比较,结果表明:xLSTM-Informer模型在平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)与决定系数R^(2)上均取得最优性能,R^(2)达0.954,较对比模型分别提升了21.4%,17.8%和19.4%。为进一步验证xLSTM-Informer模型在瓦斯浓度预测任务中的有效性与适应性,选取某矿井综放工作面实测传感器数据进行实例验证,同时与LSTM-Transformer,RNN-Informer,LSTM-Informer和双向LSTM-Informer(BiLSTM-Informer)4类复合模型进行对比,结果表明:xLSTM-Informer模型在瓦斯浓度变化趋势与关键拐点的响应方面均优于对比模型,表现出较高的拟合性和时序同步性。 展开更多
关键词 瓦斯浓度预测 长时间序列预测 xLSTM informer ProbSparse自注意力机制
在线阅读 下载PDF
LSTM与Informer融合预测冠层区域温度
9
作者 黄铝文 刘宇航 +1 位作者 屈昆仪 朱玉颖 《农业工程学报》 北大核心 2025年第8期222-232,共11页
针对传统温度预测方法难以充分捕捉多尺度信息,导致模型预测性能不佳等问题,该研究提出了一种基于Informer架构和长短时记忆网络(long short-term memory,LSTM)与多源数据融合的冠层区域温度预测模型。在编码层中,采用稀疏注意力机制提... 针对传统温度预测方法难以充分捕捉多尺度信息,导致模型预测性能不佳等问题,该研究提出了一种基于Informer架构和长短时记忆网络(long short-term memory,LSTM)与多源数据融合的冠层区域温度预测模型。在编码层中,采用稀疏注意力机制提取输入因子的多尺度信息及其与长时序数据之间的耦合关系;在解码层中,利用LSTM提取短期时序依赖,以增强时间序列的连贯性,同时引入改进的反向残差前馈网络(improved residual feedforward network,IRFFN)以优化模型结构。首先采用孤立森林法对数据进行异常值清理,并进行了归一化处理;然后使用斯皮尔曼相关系数法对冠层区域温度进行相关性分析,并选择相关程度较高的环境因子作为模型的输入特征;最终通过网格搜索法对超参数进行优化,并通过迭代训练实现模型的最优配置。通过与其他4种主流算法进行对比分析,提出的InformerLSTM在冠层区域温度预测方面表现出更高的精度,其平均绝对误差(mean absolute error,MAE)、均方根误差(root mean square error,RMSE)和决定系数(R^(2))分别达到了0.166、0.224℃和0.978,与基础模型Informer相比,冠层区域温度的均方根误差降低了0.448℃。该模型在时间序列预测方面具有较高的精度,为区域气象温度的中短期精准预测提供了一种新的技术方法。 展开更多
关键词 冠层 温度 非线性时间序列 长短期记忆神经网络 informer
在线阅读 下载PDF
基于ICEEMDAN-PE和IDBO-Informer组合模型的短期负荷预测 被引量:1
10
作者 于多 曹燚 +2 位作者 王海荣 赵翱东 曹倩 《中国电力》 北大核心 2025年第6期19-32,共14页
针对传统方法在处理复杂负荷数据时存在的噪声处理不足、特征提取能力有限及模型训练复杂等问题,提出了一种基于改进完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)-置... 针对传统方法在处理复杂负荷数据时存在的噪声处理不足、特征提取能力有限及模型训练复杂等问题,提出了一种基于改进完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)-置换熵(permutation entropy,PE)和改进蜣螂优化算法(improved dung beetle optimizer,IDBO)-Informer的创新组合预测模型。首先,该模型通过小波软阈值去噪算法预处理原始负荷数据,减少噪声干扰。其次,利用ICEEMDAN多尺度分解负荷数据,精准捕捉负荷特征,并采用置换熵评估分量复杂度。最后,对蜣螂优化算法进行改进,通过融合混沌与逆向学习策略进行种群初始化,引入自适应步长与凸透镜逆成像策略及随机差异变异策略,优化Informer预测模型参数,显著提升预测效率与准确性。实验结果表明,该模型在短期负荷预测中表现出色,平均绝对误差为81.3 MW(原始负荷数据范围约为500 MW至1 500 MW),均方根误差为109.2 MW,拟合系数评分为0.991,远优于传统方法,充分验证了模型的创新性和优越性。 展开更多
关键词 负荷预测 ICEEMDAN 改进蜣螂优化算法 informer
在线阅读 下载PDF
基于EKF-HInformer模型估计汽车动力电池的SOC&SOH 被引量:1
11
作者 彭自然 杨肖阳 肖伸平 《电子测量与仪器学报》 北大核心 2025年第3期21-33,共13页
针对传统模型荷电状态(SOC)和健康状态(SOH)估计精度低、鲁棒性差的问题,提出一种基于扩展卡尔曼滤波(EKF)和深度学习模型Informer改进优化的估计模型EKF-HInformer,实现电动汽车动力电池SOC与SOH的实时精准估计。首先,运用EKF算法归一... 针对传统模型荷电状态(SOC)和健康状态(SOH)估计精度低、鲁棒性差的问题,提出一种基于扩展卡尔曼滤波(EKF)和深度学习模型Informer改进优化的估计模型EKF-HInformer,实现电动汽车动力电池SOC与SOH的实时精准估计。首先,运用EKF算法归一化整理电池实时数据,并通过调整自适应增益因子减少噪声波动,提高EKF数据滤波处理的性能。然后,运用Informer网络模型对归一化后的电池数据进行智能估计。为减少Informer模型离群点或异常值所导致的注意力权重偏差问题,采用Hampel算法对Informer进行优化,提高多头概率稀疏自注意力机制特征学习的能力。最后,把滤波整理后的数据输入到HInformer网络中估算实时的SOC和SOH。采用牛津大学与马里兰大学的电池数据集进行实验验证,结果显示SOC与SOH估计精度均超99.5%,均方根误差(RMSE)小于1%,最大绝对误差(MAXE)小于0.5%。相比传统Informer、Transformer和长短期记忆(LSTM)模型,该模型估计SOC和SOH的速度更快、准确度更高,展现出优越的鲁棒性和泛化能力。 展开更多
关键词 动力电池 荷电状态 健康状态 自适应增益因子 扩展卡尔曼滤波 Hampel优化算法 informer
在线阅读 下载PDF
基于图神经网络与Informer融合的主动配电网状态估计
12
作者 郝蛟 王冬 +1 位作者 邱剑 郭创新 《电力自动化设备》 北大核心 2025年第8期12-19,共8页
含分布式光伏的主动配电网具有较高的新能源渗透率和动态负荷特征,传统状态估计方法在应对复杂动态行为和数据质量问题时存在局限,影响配电网调度优化与安全性。提出一种基于图神经网络(GNN)与Informer模型融合的含光伏主动配电网状态... 含分布式光伏的主动配电网具有较高的新能源渗透率和动态负荷特征,传统状态估计方法在应对复杂动态行为和数据质量问题时存在局限,影响配电网调度优化与安全性。提出一种基于图神经网络(GNN)与Informer模型融合的含光伏主动配电网状态估计方法。借助GNN构建量测模型,有效捕捉配电网拓扑结构的空间依赖特性;利用Informer的长时间序列预测能力,构建状态预测模型,精准地刻画配电网的动态物理特性。所提模型不仅能够处理量测数据中的缺失和噪声问题,而且能够增强状态估计的鲁棒性和物理一致性。基于IEEE 33节点系统及某实际配电网的仿真结果表明,所提方法在状态估计的准确性、抗干扰能力、物理一致性和计算效率方面均有显著提升。 展开更多
关键词 主动配电网 分布式光伏 状态估计 分布式新能源 图神经网络 informer
在线阅读 下载PDF
线性分解和周期增强Informer的太阳辐射短临预报研究 被引量:1
13
作者 姚蕊 刘小芳 《太阳能学报》 北大核心 2025年第2期505-510,共6页
针对辐射周期趋势及外部影响特征捕获不足的问题,提出一种线性分解和周期增强Informer的地表太阳辐射短临预报方法。首先,改进灰色关联度方法,获取历史辐射与多种外部气象因素关联度,提取16种高相关外部气象特征建立高关联特征集,强化... 针对辐射周期趋势及外部影响特征捕获不足的问题,提出一种线性分解和周期增强Informer的地表太阳辐射短临预报方法。首先,改进灰色关联度方法,获取历史辐射与多种外部气象因素关联度,提取16种高相关外部气象特征建立高关联特征集,强化捕捉辐射与气象因素之间的复杂关系的能力;其次,在基于Transformer解决方案的基础上引入周期性嵌入层和ReLU激活函数,为模型提供更准确、合理的周期时间特征和辐射变化区间。最后,在Informer后增加平滑序列分解线性层,将Autoformer中的分解方案和FEDformer中的线性层相结合,进一步增强捕捉时序数据中周期性和季节性成分的能力。实验结果表明:该IDL方法结合外部气象特征能极好地提高模型短临预报效果,精度高于近年来基于Transformer系列的解决方案;比DLinear均方误差最高减少30.6%。 展开更多
关键词 太阳辐射 informer TRANSFORMER 平滑序列线性分解 周期嵌入 灰色关联度
在线阅读 下载PDF
基于时空图网络和Informer的多元时间序列异常检测 被引量:1
14
作者 杨晨龙 孙晔 刘晓悦 《现代电子技术》 北大核心 2025年第15期83-90,共8页
对多元时间序列进行有效的异常检测可以保证物联网系统的安全,现有方法通常从附近的时间点和邻近节点学习局部时空表示,以重构或预测传感器数据。针对局部表征难以模拟复杂的非线性拓扑关系和动态时间模式导致的误报和异常遗漏等问题,... 对多元时间序列进行有效的异常检测可以保证物联网系统的安全,现有方法通常从附近的时间点和邻近节点学习局部时空表示,以重构或预测传感器数据。针对局部表征难以模拟复杂的非线性拓扑关系和动态时间模式导致的误报和异常遗漏等问题,文中提出一种多元时间序列异常检测模型STGIN。首先,将时间卷积网络嵌入多尺度残差卷积网络中,捕捉短期粒度级别的时间特征,并引入门控机制过滤无关信息;然后,构建空间图结构,利用图注意力网络有效地学习复杂的时空依赖关系;最后,联合优化预测和重构模块,结合变分自编码器和Informer进行长时间序列重构,利用提取到的全局和局部时空关联检测正常数据样本中的异常。在MSL、SMAP和SWaT公开数据集上进行实验,所得F1分数分别为0.9623、0.9425和0.8709,均优于基准模型,验证了所提方法的有效性和可行性。 展开更多
关键词 多元时间序列 异常检测 时间卷积网络 门控机制 图注意力网络 informer
在线阅读 下载PDF
LS+Informer用于极移预报的方法研究
15
作者 王丹丹 乔书波 +2 位作者 程栋梁 徐海龙 闫亚明 《大地测量与地球动力学》 北大核心 2025年第9期899-904,共6页
为提高极移中长期预报精度,在传统LS+AR预报模型的基础上结合深度学习方法,提出LS+Informer(least-squares extrapolation and Informer)预报模型。以LS+AR预报模型和Bulletin A的预报结果为参考,采用平均绝对误差(mean absolute error,... 为提高极移中长期预报精度,在传统LS+AR预报模型的基础上结合深度学习方法,提出LS+Informer(least-squares extrapolation and Informer)预报模型。以LS+AR预报模型和Bulletin A的预报结果为参考,采用平均绝对误差(mean absolute error, MAE)作为评价指标。采用LS+Informer方法后,极移的PMX分量和PMY分量的中长期预报精度得到显著提升,幅度分别可达61.94%和64.86%。同时,在中长期(365 d)阶段可以将MAE值控制在10 mas以内。研究结果显示,在极移的中长期预报中,LS+Informer模型的预报精度明显优于LS+AR模型,且优于Bulletin A的预报结果。该结果表明,LS+Informer模型可有效应用于中长期极移预测。 展开更多
关键词 Transformer模型 informer模型 LS+AR模型 极移 平均绝对误差
在线阅读 下载PDF
基于Informer和改进sBTTC指数的电力系统暂态稳定一体化超前判别
16
作者 郑宗生 陈明雪 +2 位作者 王渝红 何其多 朱玲俐 《电网技术》 北大核心 2025年第7期2659-2670,共12页
现代电力系统逐渐呈现高比例新能源并网趋势,大扰动下系统动态行为更加复杂,功角、电压相互耦合影响,使得暂态稳定问题更加突出。传统机理分析和端对端的深度学习判稳算法分别在判稳时效性和可解释性上有所欠缺,将深度学习算法和稳定机... 现代电力系统逐渐呈现高比例新能源并网趋势,大扰动下系统动态行为更加复杂,功角、电压相互耦合影响,使得暂态稳定问题更加突出。传统机理分析和端对端的深度学习判稳算法分别在判稳时效性和可解释性上有所欠缺,将深度学习算法和稳定机理有效结合一直是电力系统暂态稳定研究的重要方向。为此,该文提出一种基于Informer和改进简化支路暂态输电能力指数(simplified branch transient transmission capacity,sBTTC)的电力系统暂态稳定一体化判别方法,基于机理分析的判别方法,利用深度学习算法增强稳定判别效果。首先,在经典系统上通过机理分析了暂态稳定的失稳特征与原始sBTTC指数的特点,进一步提出了指数积分判别法来改进原始的阈值判稳;其次,搭建Informer预测网络,根据电气响应量的时空特性调整了Informer的输入信息,结合预测网络与指数积分判别法,进一步构建了针对电力系统暂态功角和电压稳定的一体化超前判别模型,能够实现对系统稳定的超前预判并同时判断系统主导稳定模式;最后,在含有高比例新能源的直流馈入系统上进行了多次判稳任务,验证了模型的判稳性能。对比实验结果显示所提方法在准确性和判别时效性上有显著提升。 展开更多
关键词 暂态电压 暂态功角 informer网络 主导稳定模式
在线阅读 下载PDF
基于SVMD-GOA-Informer的大坝变形预测模型
17
作者 高阳 刘永强 《中国农村水利水电》 北大核心 2025年第10期71-76,共6页
针对大坝变形的非线性、非稳定性等特征,提出了一种基于逐次变分模态分解(SVMD)和Informer的大坝变形预测模型。首先通过SVMD对大坝位移序列进行分解,避免了频率重叠和模式混合问题。然后对各模态分量分别采用随机森林算法(RF)计算影响... 针对大坝变形的非线性、非稳定性等特征,提出了一种基于逐次变分模态分解(SVMD)和Informer的大坝变形预测模型。首先通过SVMD对大坝位移序列进行分解,避免了频率重叠和模式混合问题。然后对各模态分量分别采用随机森林算法(RF)计算影响因子的权重,筛选出关键因子,并为各分量构建对应的Informer模型进行预测,采用蚱蜢优化算法(GOA)对Informer模型的超参数进行寻优,最终重构各分量预测结果,得到最终位移预测结果。基于国内某工程实例的验证结果表明,SVMD-GOA-Informer模型在位移预测精度和稳定性方面优于其他常用模型。 展开更多
关键词 逐次变分模态分解 大坝变形预测 informer 蚱蜢优化算法 随机森林算法
在线阅读 下载PDF
基于MMoE-CNN-Informer模型的电力系统多元负荷长短期时间序列预测 被引量:1
18
作者 谈耀荻 黄艳国 +1 位作者 刘景锋 杨仁峥 《电气工程学报》 北大核心 2025年第2期253-263,共11页
随着用户侧用能的多样性以及能源的耦合性日益增加,多元负荷的预测对于地区调度的精细化管理至关重要。在保证短期多元负荷预测精度的同时,针对多元负荷较长期预测提出了一种基于MMoE-CNN-Informer的预测方案来提升负荷预测精度。首先... 随着用户侧用能的多样性以及能源的耦合性日益增加,多元负荷的预测对于地区调度的精细化管理至关重要。在保证短期多元负荷预测精度的同时,针对多元负荷较长期预测提出了一种基于MMoE-CNN-Informer的预测方案来提升负荷预测精度。首先使用卷积神经网络对多元负荷序列及其特征序列进行监督式特征提取,然后将特征输入(Multi-gate mixture-of-experts,MMoE)多任务模型学习多元负荷序列间的耦合强度,最后将学习结果输入各负荷Informer预测模型实现多元负荷较长时间的组合预测任务。以多元负荷数据集进行了试验,并与其他6种相关的预测方法进行了比较,证明了所提改进模型在多元负荷的长短期时间序列预测上存在一定的优势,在保证多元负荷短期预测精度的同时,提升了对于多元负荷长期预测的能力,体现了方案的有效性和可行性。 展开更多
关键词 多元负荷预测 较长期预测 多任务模型 卷积神经网络 informer预测模型
在线阅读 下载PDF
基于KA Informer的电动汽车动力电池荷电状态和健康状态估算
19
作者 彭自然 王顺豪 +1 位作者 肖伸平 肖利君 《电工技术学报》 北大核心 2025年第19期6378-6394,共17页
针对现有电动汽车动力电池估计荷电状态(SOC)和健康状态(SOH)估计方法存在运算效率低、实时性差以及估算准确率低的问题,该文提出一种基于网络模型KA Informer精确估计电动汽车动力电池SOC&SOH的方法。首先,依据Kolmogorov-Arnold... 针对现有电动汽车动力电池估计荷电状态(SOC)和健康状态(SOH)估计方法存在运算效率低、实时性差以及估算准确率低的问题,该文提出一种基于网络模型KA Informer精确估计电动汽车动力电池SOC&SOH的方法。首先,依据Kolmogorov-Arnold理论将原始堆叠降噪自编码器(SDAE)内部权重W优化为可自主学习的激活函数B-spline,并采用网格扩展技术细粒化B-spline,组成KASDAE新模型,使得堆叠降噪自编码器能够对传感器采集到的电压、电流、温度数据进行清洗。其次,提出傅里叶混合窗口注意力机制(FMWA)替换稀疏多头注意力机制(MPPSA),优化Informer模型结构,增强Informer模型捕获电池长序列数据局部信息和全局信息的能力。最后,将清洗后的数据输入FMWA Informer网络模型实现荷电状态和健康状态的精确估计。实验结果表明,所提模型估计SOC的平均绝对误差和方均根误差分别达到0.24%和0.37%,估计SOH的平均绝对误差和方均根误差分别达到了0.5%和0.62%。与传统Informer、Transformer、长短时记忆(LSTM)、门控循环单元(GRU)、极限学习机(ELM)模型相比,该模型预测SOC和SOH的速度更快,估算准确度得到有效提升。 展开更多
关键词 电动汽车 动力电池 Kolmogorov-Arnold理论 堆叠降噪自编码器 改进informer
在线阅读 下载PDF
基于SDAE-DCPInformer的电动汽车电池SOC和SOH估算方法
20
作者 彭自然 王顺豪 肖伸平 《智能系统学报》 北大核心 2025年第4期969-983,共15页
针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)... 针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)清洗电压、电流和温度数据中的异常数据和空缺数据,减小对估算精度的影响。引入动态通道剪枝(dynamical channel pruning,DCP)技术对Informer模型进行稀疏化处理,提高剪枝后模型的性能和稳定性。将清洗过的数据输入DCPInformer模型实现SOC和SOH的精确估计。实验结果表明,所提出的SDAE-DCPInformer模型估计SOC的平均绝对误差和均方根误差分别达到0.25%和0.38%,估计SOH的平均绝对误差和均方根误差分别达到了0.51%和0.64%。与传统Transformer等模型相比,所提模型预测SOC和SOH的速度更快,估算准确度有效提升,拥有的更好稳定性和泛化性。 展开更多
关键词 电动汽车 动力电池 荷电状态 健康状态 堆叠降噪自编码器 数据清洗 动态通道剪枝 改进informer
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部