To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov pr...To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov process, so that the air combat situation can be effectively calculated via Bayesian inference theory. According to the situation assessment result,adaptively adjusts the weights of maneuver decision factors, which makes the objective function more reasonable and ensures the superiority situation for UCAV. As the air combat game is characterized by highly dynamic and a significant amount of uncertainty,to enhance the robustness and effectiveness of maneuver decision results, fuzzy logic is used to build the functions of four maneuver decision factors. Accuracy prediction of opponent aircraft is also essential to ensure making a good decision; therefore, a prediction model of opponent aircraft is designed based on the elementary maneuver method. Finally, the moving horizon optimization strategy is used to effectively model the whole air combat maneuver decision process. Various simulations are performed on typical scenario test and close-in dogfight, the results sufficiently demonstrate the superiority of the designed maneuver decision method.展开更多
Aiming at the problem that the consumption data of new ammunition is less and the demand is difficult to predict,combined with the law of ammunition consumption under different damage grades,a Bayesian inference metho...Aiming at the problem that the consumption data of new ammunition is less and the demand is difficult to predict,combined with the law of ammunition consumption under different damage grades,a Bayesian inference method for ammunition demand based on Gompertz distribution is proposed.The Bayesian inference model based on Gompertz distribution is constructed,and the system contribution degree is introduced to determine the weight of the multi-source information.In the case where the prior distribution is known and the distribution of the field data is unknown,the consistency test is performed on the prior information,and the consistency test problem is transformed into the goodness of the fit test problem.Then the Bayesian inference is solved by the Markov chain-Monte Carlo(MCMC)method,and the ammunition demand under different damage grades is gained.The example verifies the accuracy of this method and solves the problem of ammunition demand prediction in the case of insufficient samples.展开更多
According to the randomness and uncertainty of information in the safety diagnosis of coal mine production system (CMPS), a novel safety diagnosis method was proposed by applying fuzzy logic inference method, which co...According to the randomness and uncertainty of information in the safety diagnosis of coal mine production system (CMPS), a novel safety diagnosis method was proposed by applying fuzzy logic inference method, which consists of safety diagnosis fuzzifier, defuzzifier, fuzzy rules base and inference engine. Through the safety diagnosis on coal mine roadway rail transportation system, the result shows that the unsafe probability is about 0.5 influenced by no speed reduction and over quick turnout on roadway, which is the most possible reason leading to the accident of roadway rail transportation system.展开更多
Inference are considered for the dependence competing risks model by using the Marshal-Olkin bivariate exponential distribution. Under generalized progressively hybrid censoring with partially observed failure causes,...Inference are considered for the dependence competing risks model by using the Marshal-Olkin bivariate exponential distribution. Under generalized progressively hybrid censoring with partially observed failure causes, the maximum likelihood estimators are established, and the approximate confidence intervals are also constructed via the observed Fisher information matrix.Moreover, Bayes estimates and highest probability density credible intervals are presented and the importance sampling technique is used to compute corresponding results. Finally, the numerical analysis is proposed for illustration.展开更多
Flatness pattern recognition is the key of the flatness control. The accuracy of the present flatness pattern recognition is limited and the shape defects cannot be reflected intuitively. In order to improve it, a nov...Flatness pattern recognition is the key of the flatness control. The accuracy of the present flatness pattern recognition is limited and the shape defects cannot be reflected intuitively. In order to improve it, a novel method via T-S cloud inference network optimized by genetic algorithm(GA) is proposed. T-S cloud inference network is constructed with T-S fuzzy neural network and the cloud model. So, the rapid of fuzzy logic and the uncertainty of cloud model for processing data are both taken into account. What's more, GA possesses good parallel design structure and global optimization characteristics. Compared with the simulation recognition results of traditional BP Algorithm, GA is more accurate and effective. Moreover, virtual reality technology is introduced into the field of shape control by Lab VIEW, MATLAB mixed programming. And virtual flatness pattern recognition interface is designed.Therefore, the data of engineering analysis and the actual model are combined with each other, and the shape defects could be seen more lively and intuitively.展开更多
An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demons...An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demonstrated.Extensive field experimental work was carried out in order to gather enough data for training and prediction.The statistical methods,such as the correlation coefficient,absolute fraction of variance and root mean square error,were given to compare the predicted and actual values for model validation.The simulation results predicted with the ANFIS can be used to simulate the performance of a reversibly used cooling tower quite accurately.Therefore,the ANFIS approach can reliably be used for forecasting the performance of RUCT.展开更多
A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller...A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller. It consists of an off-line part and an on-line part. In the off-line part, for a given control system with a PID controller,by taking the overshoot, setting time and steady-state error of the system unit step response as the performance indexes and by using the ant system algorithm, a group of optimal PID parameters K*p , Ti* and T*d can be obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-line part, based on Kp* , Ti*and Td* and according to the current system error e and its time derivative, a specific program is written, which is used to optimize and adjust the PID parameters on-line through a fuzzy inference mechanism to ensure that the system response has optimal transient and steady-state performance. This kind of intelligent PID controller can be used to control the motor of the intelligent bionic artificial leg designed by the authors. The result of computer simulation experiment shows that the controller has less overshoot and shorter setting time.展开更多
Research on human emotions has started to address psychological aspects of human nature and has advanced to the point of designing various models that represent them quantitatively and systematically. Based on the fin...Research on human emotions has started to address psychological aspects of human nature and has advanced to the point of designing various models that represent them quantitatively and systematically. Based on the findings, a method is suggested for emotional space formation and emotional inference that enhance the quality and maximize the reality of emotion-based personalized services. In consideration of the subjective tendencies of individuals, AHP was adopted for the quantitative evaluation of human emotions, based on which an emotional space remodeling method is suggested in reference to the emotional model of Thayer and Plutchik, which takes into account personal emotions. In addition, Sugeno fuzzy inference, fuzzy measures, and Choquet integral were adopted for emotional inference in the remodeled personalized emotional space model. Its performance was evaluated through an experiment. Fourteen cases were analyzed with 4.0 and higher evaluation value of emotions inferred, for the evaluation of emotional similarity, through the case studies of 17 kinds of emotional inference methods. Matching results per inference method in ten cases accounting for 71% are confirmed. It is also found that the remaining two cases are inferred as adjoining emotion in the same section. In this manner, the similarity of inference results is verified.展开更多
Under Type-Ⅱ progressively hybrid censoring, this paper discusses statistical inference and optimal design on stepstress partially accelerated life test for hybrid system in presence of masked data. It is assumed tha...Under Type-Ⅱ progressively hybrid censoring, this paper discusses statistical inference and optimal design on stepstress partially accelerated life test for hybrid system in presence of masked data. It is assumed that the lifetime of the component in hybrid systems follows independent and identical modified Weibull distributions. The maximum likelihood estimations(MLEs)of the unknown parameters, acceleration factor and reliability indexes are derived by using the Newton-Raphson algorithm. The asymptotic variance-covariance matrix and the approximate confidence intervals are obtained based on normal approximation to the asymptotic distribution of MLEs of model parameters. Moreover,two bootstrap confidence intervals are constructed by using the parametric bootstrap method. The optimal time of changing stress levels is determined under D-optimality and A-optimality criteria.Finally, the Monte Carlo simulation study is carried out to illustrate the proposed procedures.展开更多
The genetic base that cotton breeders commonly use to improve Upland cultivars is very narrow.The AD-genome species Gossypium barbadense,G.tomentosum,and G.mustelinum are part of
In a reliability comparative test, the joint censoring model is usually adopted to evaluate the performances of units with the same facility. However, most researchers ignore the pos- sibility that there is more than ...In a reliability comparative test, the joint censoring model is usually adopted to evaluate the performances of units with the same facility. However, most researchers ignore the pos- sibility that there is more than one factor for the failure when a test unit fails. To solve this problem, we consider a joint Type-II hybrid censoring model for the analysis of exponential competing failure data. Based on the maximum likelihood theory, we compute the maximum likelihood estimators (MLEs) of parameters and then obtain the condition ensuring MLEs existence for every unknown parameter. Then we derive the conditional exact distributions and corresponding moment properties for parameters by the moment generating function (MGF). A Monte-Carlo simulation is conducted to compare the performances of different ways. And finally, we conduct a numerical example to illustrate the proposed method.展开更多
In this proceeding,some highlight results on the constraints of the nuclear matter equation of state(EOS)from the data of nucleus resonance and neutron-skin thickness using the Bayesian approach based on the Skyrme-Ha...In this proceeding,some highlight results on the constraints of the nuclear matter equation of state(EOS)from the data of nucleus resonance and neutron-skin thickness using the Bayesian approach based on the Skyrme-Hartree-Fock model and its extension have been presented.Typically,the anti-correlation and positive correlations between the slope parameter and the value of the symmetry energy at the saturation density under the constraint of the neutron-skin thickness and the isovector giant dipole resonance have been discussed respectively.It’s shown that the Bayesian analysis can help to find a compromise for the“PREXII puzzle”and the“soft Tin puzzle”.The possible modifications on the constraints of lower-order EOS parameters as well as the relevant correlation when higher-order EOS parameters are incorporated as independent variables have been further illustrated.For a given model and parameter space,the Bayesian approach serves as a good analysis tool suitable for multi-messengers versus multi-variables,and is helpful for constraining quantitatively the model parameters as well as their correlations.展开更多
In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and...In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed.展开更多
In this paper, a method to infer global depth ordering for monocular images is presented. Firstly a distance metric is defined with color, compactness, entropy and edge features to estimate the difference between pixe...In this paper, a method to infer global depth ordering for monocular images is presented. Firstly a distance metric is defined with color, compactness, entropy and edge features to estimate the difference between pixels and seeds, which can ensure the superpixels to obtain more accurate object contours. To correctly infer local depth relationship, a weighting descriptor is designed that combines edge, T-junction and saliency features to avoid wrong local inference caused by a single feature. Based on the weighting descriptor, a global inference strategy is presented,which not only can promote the performance of global depth ordering, but also can infer the depth relationships correctly between two non-adjacent regions. The simulation results on the BSDS500 dataset, Cornell dataset and NYU 2 dataset demonstrate the effectiveness of the approach.展开更多
Based on a presented inference algorithm of fuzzy reasoning, a fuzzy reasoning system is made up. A method of modeling the fuzzy reasoning system, and the setting up of the reasoning knowledge based and reasoning rule...Based on a presented inference algorithm of fuzzy reasoning, a fuzzy reasoning system is made up. A method of modeling the fuzzy reasoning system, and the setting up of the reasoning knowledge based and reasoning rules are studied in this paper. Then a heuristic inference algorithm is presented according to the system.展开更多
Existing blockwise empirical likelihood(BEL)method blocks the observations or their analogues,which is proven useful under some dependent data settings.In this paper,we introduce a new BEL(NBEL)method by blocking the ...Existing blockwise empirical likelihood(BEL)method blocks the observations or their analogues,which is proven useful under some dependent data settings.In this paper,we introduce a new BEL(NBEL)method by blocking the scoring functions under high dimensional cases.We study the construction of confidence regions for the parameters in spatial autoregressive models with spatial autoregressive disturbances(SARAR models)with high dimension of parameters by using the NBEL method.It is shown that the NBEL ratio statistics are asymptoticallyχ^(2)-type distributed,which are used to obtain the NBEL based confidence regions for the parameters in SARAR models.A simulation study is conducted to compare the performances of the NBEL and the usual EL methods.展开更多
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,...A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.展开更多
To solve the problem of increased computation and communication costs caused by using homomorphic encryption(HE) to protect all gradients in traditional cryptographic aggregation(cryptoaggregation) schemes,a fast cryp...To solve the problem of increased computation and communication costs caused by using homomorphic encryption(HE) to protect all gradients in traditional cryptographic aggregation(cryptoaggregation) schemes,a fast crypto-aggregation scheme called RandomCrypt was proposed.RandomCrypt performed clipping and quantization to fix the range of gradient values and then added two types of noise on the gradient for encryption and differential privacy(DP) protection.It conducted HE on noise keys to revise the precision loss caused by DP protection.RandomCrypt was implemented based on a FATE framework,and a hacking simulation experiment was conducted.The results show that the proposed scheme can effectively hinder inference attacks while ensuring training accuracy.It only requires 45%~51% communication cost and 5%~23% computation cost compared with traditional schemes.展开更多
Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator ...Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator control are studied,and a complete manipulator vision tracking system is designed.Firstly,Denavit-Hartenberg(D-H)parameters method is used to construct the model of the manipulator and analyze the forward and inverse kinematics equations of the manipulator.At the same time,a binocular camera is used to obtain the threedimensional position of the target.Secondly,in order to make the manipulator track the target more accurately,the fuzzy adaptive square root unscented Kalman filter(FSRUKF)is proposed to estimate the target state.Finally,the manipulator tracking system is built by using the position-based visual servo.The simulation experiments show that FSRUKF converges faster and with less error than the square root unscented Kalman filter(SRUKF),which meets the application requirements of the manipulator tracking system,and basically meets the application requirements of the manipulator tracking system in the practical experiments.展开更多
基金supported by the National Natural Science Foundation of China(61601505)the Aeronautical Science Foundation of China(20155196022)the Shaanxi Natural Science Foundation of China(2016JQ6050)
文摘To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov process, so that the air combat situation can be effectively calculated via Bayesian inference theory. According to the situation assessment result,adaptively adjusts the weights of maneuver decision factors, which makes the objective function more reasonable and ensures the superiority situation for UCAV. As the air combat game is characterized by highly dynamic and a significant amount of uncertainty,to enhance the robustness and effectiveness of maneuver decision results, fuzzy logic is used to build the functions of four maneuver decision factors. Accuracy prediction of opponent aircraft is also essential to ensure making a good decision; therefore, a prediction model of opponent aircraft is designed based on the elementary maneuver method. Finally, the moving horizon optimization strategy is used to effectively model the whole air combat maneuver decision process. Various simulations are performed on typical scenario test and close-in dogfight, the results sufficiently demonstrate the superiority of the designed maneuver decision method.
基金the Army Scientific Research(KYSZJWJK1744,012016012600B11403).
文摘Aiming at the problem that the consumption data of new ammunition is less and the demand is difficult to predict,combined with the law of ammunition consumption under different damage grades,a Bayesian inference method for ammunition demand based on Gompertz distribution is proposed.The Bayesian inference model based on Gompertz distribution is constructed,and the system contribution degree is introduced to determine the weight of the multi-source information.In the case where the prior distribution is known and the distribution of the field data is unknown,the consistency test is performed on the prior information,and the consistency test problem is transformed into the goodness of the fit test problem.Then the Bayesian inference is solved by the Markov chain-Monte Carlo(MCMC)method,and the ammunition demand under different damage grades is gained.The example verifies the accuracy of this method and solves the problem of ammunition demand prediction in the case of insufficient samples.
基金Project(2006BAK04B0302)supported by the National Science and Technology Pillar Program during the 11th Five-year Plan of China
文摘According to the randomness and uncertainty of information in the safety diagnosis of coal mine production system (CMPS), a novel safety diagnosis method was proposed by applying fuzzy logic inference method, which consists of safety diagnosis fuzzifier, defuzzifier, fuzzy rules base and inference engine. Through the safety diagnosis on coal mine roadway rail transportation system, the result shows that the unsafe probability is about 0.5 influenced by no speed reduction and over quick turnout on roadway, which is the most possible reason leading to the accident of roadway rail transportation system.
基金supported by the National Natural Science Foundation of China(11501433)the Fundamental Research Funds for the Central Universities(JB180711)
文摘Inference are considered for the dependence competing risks model by using the Marshal-Olkin bivariate exponential distribution. Under generalized progressively hybrid censoring with partially observed failure causes, the maximum likelihood estimators are established, and the approximate confidence intervals are also constructed via the observed Fisher information matrix.Moreover, Bayes estimates and highest probability density credible intervals are presented and the importance sampling technique is used to compute corresponding results. Finally, the numerical analysis is proposed for illustration.
基金Project(LJRC013)supported by the University Innovation Team of Hebei Province Leading Talent Cultivation,China
文摘Flatness pattern recognition is the key of the flatness control. The accuracy of the present flatness pattern recognition is limited and the shape defects cannot be reflected intuitively. In order to improve it, a novel method via T-S cloud inference network optimized by genetic algorithm(GA) is proposed. T-S cloud inference network is constructed with T-S fuzzy neural network and the cloud model. So, the rapid of fuzzy logic and the uncertainty of cloud model for processing data are both taken into account. What's more, GA possesses good parallel design structure and global optimization characteristics. Compared with the simulation recognition results of traditional BP Algorithm, GA is more accurate and effective. Moreover, virtual reality technology is introduced into the field of shape control by Lab VIEW, MATLAB mixed programming. And virtual flatness pattern recognition interface is designed.Therefore, the data of engineering analysis and the actual model are combined with each other, and the shape defects could be seen more lively and intuitively.
基金Projects(51108165, 51178170) supported by the National Natural Science Foundation of China
文摘An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demonstrated.Extensive field experimental work was carried out in order to gather enough data for training and prediction.The statistical methods,such as the correlation coefficient,absolute fraction of variance and root mean square error,were given to compare the predicted and actual values for model validation.The simulation results predicted with the ANFIS can be used to simulate the performance of a reversibly used cooling tower quite accurately.Therefore,the ANFIS approach can reliably be used for forecasting the performance of RUCT.
文摘A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller. It consists of an off-line part and an on-line part. In the off-line part, for a given control system with a PID controller,by taking the overshoot, setting time and steady-state error of the system unit step response as the performance indexes and by using the ant system algorithm, a group of optimal PID parameters K*p , Ti* and T*d can be obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-line part, based on Kp* , Ti*and Td* and according to the current system error e and its time derivative, a specific program is written, which is used to optimize and adjust the PID parameters on-line through a fuzzy inference mechanism to ensure that the system response has optimal transient and steady-state performance. This kind of intelligent PID controller can be used to control the motor of the intelligent bionic artificial leg designed by the authors. The result of computer simulation experiment shows that the controller has less overshoot and shorter setting time.
基金Project(2012R1A1A2042625) supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education
文摘Research on human emotions has started to address psychological aspects of human nature and has advanced to the point of designing various models that represent them quantitatively and systematically. Based on the findings, a method is suggested for emotional space formation and emotional inference that enhance the quality and maximize the reality of emotion-based personalized services. In consideration of the subjective tendencies of individuals, AHP was adopted for the quantitative evaluation of human emotions, based on which an emotional space remodeling method is suggested in reference to the emotional model of Thayer and Plutchik, which takes into account personal emotions. In addition, Sugeno fuzzy inference, fuzzy measures, and Choquet integral were adopted for emotional inference in the remodeled personalized emotional space model. Its performance was evaluated through an experiment. Fourteen cases were analyzed with 4.0 and higher evaluation value of emotions inferred, for the evaluation of emotional similarity, through the case studies of 17 kinds of emotional inference methods. Matching results per inference method in ten cases accounting for 71% are confirmed. It is also found that the remaining two cases are inferred as adjoining emotion in the same section. In this manner, the similarity of inference results is verified.
基金supported by the National Natural Science Foundation of China(71401134 71571144+1 种基金 71171164)the Program of International Cooperation and Exchanges in Science and Technology Funded by Shaanxi Province(2016KW-033)
文摘Under Type-Ⅱ progressively hybrid censoring, this paper discusses statistical inference and optimal design on stepstress partially accelerated life test for hybrid system in presence of masked data. It is assumed that the lifetime of the component in hybrid systems follows independent and identical modified Weibull distributions. The maximum likelihood estimations(MLEs)of the unknown parameters, acceleration factor and reliability indexes are derived by using the Newton-Raphson algorithm. The asymptotic variance-covariance matrix and the approximate confidence intervals are obtained based on normal approximation to the asymptotic distribution of MLEs of model parameters. Moreover,two bootstrap confidence intervals are constructed by using the parametric bootstrap method. The optimal time of changing stress levels is determined under D-optimality and A-optimality criteria.Finally, the Monte Carlo simulation study is carried out to illustrate the proposed procedures.
文摘The genetic base that cotton breeders commonly use to improve Upland cultivars is very narrow.The AD-genome species Gossypium barbadense,G.tomentosum,and G.mustelinum are part of
基金supported by the National Natural Science Foundation of China(71171164)
文摘In a reliability comparative test, the joint censoring model is usually adopted to evaluate the performances of units with the same facility. However, most researchers ignore the pos- sibility that there is more than one factor for the failure when a test unit fails. To solve this problem, we consider a joint Type-II hybrid censoring model for the analysis of exponential competing failure data. Based on the maximum likelihood theory, we compute the maximum likelihood estimators (MLEs) of parameters and then obtain the condition ensuring MLEs existence for every unknown parameter. Then we derive the conditional exact distributions and corresponding moment properties for parameters by the moment generating function (MGF). A Monte-Carlo simulation is conducted to compare the performances of different ways. And finally, we conduct a numerical example to illustrate the proposed method.
基金Supported by National Natural Science Foundation of China (11922514)。
文摘In this proceeding,some highlight results on the constraints of the nuclear matter equation of state(EOS)from the data of nucleus resonance and neutron-skin thickness using the Bayesian approach based on the Skyrme-Hartree-Fock model and its extension have been presented.Typically,the anti-correlation and positive correlations between the slope parameter and the value of the symmetry energy at the saturation density under the constraint of the neutron-skin thickness and the isovector giant dipole resonance have been discussed respectively.It’s shown that the Bayesian analysis can help to find a compromise for the“PREXII puzzle”and the“soft Tin puzzle”.The possible modifications on the constraints of lower-order EOS parameters as well as the relevant correlation when higher-order EOS parameters are incorporated as independent variables have been further illustrated.For a given model and parameter space,the Bayesian approach serves as a good analysis tool suitable for multi-messengers versus multi-variables,and is helpful for constraining quantitatively the model parameters as well as their correlations.
文摘In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed.
基金supported by the National Natural Science Foundation of China(61701036)
文摘In this paper, a method to infer global depth ordering for monocular images is presented. Firstly a distance metric is defined with color, compactness, entropy and edge features to estimate the difference between pixels and seeds, which can ensure the superpixels to obtain more accurate object contours. To correctly infer local depth relationship, a weighting descriptor is designed that combines edge, T-junction and saliency features to avoid wrong local inference caused by a single feature. Based on the weighting descriptor, a global inference strategy is presented,which not only can promote the performance of global depth ordering, but also can infer the depth relationships correctly between two non-adjacent regions. The simulation results on the BSDS500 dataset, Cornell dataset and NYU 2 dataset demonstrate the effectiveness of the approach.
文摘Based on a presented inference algorithm of fuzzy reasoning, a fuzzy reasoning system is made up. A method of modeling the fuzzy reasoning system, and the setting up of the reasoning knowledge based and reasoning rules are studied in this paper. Then a heuristic inference algorithm is presented according to the system.
基金Supported by the National Natural Science Foundation of China(12061017,12361055)the Research Fund of Guangxi Key Lab of Multi-source Information Mining&Security(22-A-01-01)。
文摘Existing blockwise empirical likelihood(BEL)method blocks the observations or their analogues,which is proven useful under some dependent data settings.In this paper,we introduce a new BEL(NBEL)method by blocking the scoring functions under high dimensional cases.We study the construction of confidence regions for the parameters in spatial autoregressive models with spatial autoregressive disturbances(SARAR models)with high dimension of parameters by using the NBEL method.It is shown that the NBEL ratio statistics are asymptoticallyχ^(2)-type distributed,which are used to obtain the NBEL based confidence regions for the parameters in SARAR models.A simulation study is conducted to compare the performances of the NBEL and the usual EL methods.
文摘A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.
基金Beijing Natural Science Foundation (L233005)National Key Research and Development Program of China (2023YFB3308200)。
文摘To solve the problem of increased computation and communication costs caused by using homomorphic encryption(HE) to protect all gradients in traditional cryptographic aggregation(cryptoaggregation) schemes,a fast crypto-aggregation scheme called RandomCrypt was proposed.RandomCrypt performed clipping and quantization to fix the range of gradient values and then added two types of noise on the gradient for encryption and differential privacy(DP) protection.It conducted HE on noise keys to revise the precision loss caused by DP protection.RandomCrypt was implemented based on a FATE framework,and a hacking simulation experiment was conducted.The results show that the proposed scheme can effectively hinder inference attacks while ensuring training accuracy.It only requires 45%~51% communication cost and 5%~23% computation cost compared with traditional schemes.
基金supported by Natural Science Basic Research Program of Shaanxi(2022JQ-593)Key Research and Development Program of Shaanxi(2022GY-089)。
文摘Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator control are studied,and a complete manipulator vision tracking system is designed.Firstly,Denavit-Hartenberg(D-H)parameters method is used to construct the model of the manipulator and analyze the forward and inverse kinematics equations of the manipulator.At the same time,a binocular camera is used to obtain the threedimensional position of the target.Secondly,in order to make the manipulator track the target more accurately,the fuzzy adaptive square root unscented Kalman filter(FSRUKF)is proposed to estimate the target state.Finally,the manipulator tracking system is built by using the position-based visual servo.The simulation experiments show that FSRUKF converges faster and with less error than the square root unscented Kalman filter(SRUKF),which meets the application requirements of the manipulator tracking system,and basically meets the application requirements of the manipulator tracking system in the practical experiments.