期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A multi-resource scheduling scheme of Kubernetes for IIoT 被引量:1
1
作者 ZHU Lin LI Junjiang +1 位作者 LIU Zijie ZHANG Dengyin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期683-692,共10页
With the rapid development of data applications in the scene of Industrial Internet of Things(IIoT),how to schedule resources in IIoT environment has become an urgent problem to be solved.Due to benefit of its strong ... With the rapid development of data applications in the scene of Industrial Internet of Things(IIoT),how to schedule resources in IIoT environment has become an urgent problem to be solved.Due to benefit of its strong scalability and compatibility,Kubernetes has been applied to resource scheduling in IIoT scenarios.However,the limited types of resources,the default scheduling scoring strategy,and the lack of delay control module limit its resource scheduling performance.To address these problems,this paper proposes a multi-resource scheduling(MRS)scheme of Kubernetes for IIoT.The MRS scheme dynamically balances resource utilization by taking both requirements of tasks and the current system state into consideration.Furthermore,the experiments demonstrate the effectiveness of the MRS scheme in terms of delay control and resource utilization. 展开更多
关键词 industrial internet of things(IIoT) Kubernetes resource scheduling time delay
在线阅读 下载PDF
Cloud control for IIoT in a cloud-edge environment 被引量:1
2
作者 YAN Ce XIA Yuanqing +1 位作者 YANG Hongjiu ZHAN Yufeng 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期1013-1027,共15页
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for... The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms. 展开更多
关键词 5G and time sensitive network(TSN) industrial internet of things(IIoT)workflow transmission control protocol(TCP)flows control cloud edge collaboration multi-objective optimal scheduling
在线阅读 下载PDF
Clustering-based Demand Response for Intelligent Energy Management in 6G-enabled Smart Grids
3
作者 Ran WANG Jiang-tian NIE +1 位作者 Yang ZHANG Kun ZHU 《计算机科学》 CSCD 北大核心 2022年第6期44-54,共11页
As a typical industrial Internet of things(IIOT)service,demand response(DR)is becoming a promising enabler for intelligent energy management in 6 G-enabled smart grid systems,to achieve quick response for supply-deman... As a typical industrial Internet of things(IIOT)service,demand response(DR)is becoming a promising enabler for intelligent energy management in 6 G-enabled smart grid systems,to achieve quick response for supply-demand mismatches.How-ever,existing literatures try to adjust customers’load profiles optimally,instead of electricity overhead,energy consumption patterns of residential appliances,customer satisfaction levels,and energy consumption habits.In this paper,a novel DR method is investigated by mixing the aforementioned factors,where the residential customer cluster is proposed to enhance the performance.Clustering approaches are leveraged to study the electricity consumption habits of various customers by extracting their features and characteristics from historical data.Based on the extracted information,the residential appliances can be scheduled effectively and flexibly.Moreover,we propose and study an efficient optimization framework to obtain the optimal scheduling solution by using clustering and deep learning methods.Extensive simulation experiments are conducted with real-world traces.Numerical results show that the proposed DR method and optimization framework outperform other baseline schemes in terms of the system overhead and peak-to-average ratio(PAR).The impact of various factors on the system utility is further analyzed,which provides useful insights on improving the efficiency of the DR strategy.With the achievement of efficient and intelligent energy management,the proposed method also promotes the realization of China’s carbon peaking and carbon neutrality goals. 展开更多
关键词 Demand response(DR) Customer clustering Deep learning 6G-enabled industrial internet of things(IIOT) Smart srid(SG)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部