The effects of rapid heating cyclic heat treatment on mechanical properties of a TiAl based alloy (Ti 33Al 3Cr) were studied by means of an induction heating machine. The results show that: 1) fine fully lamellar micr...The effects of rapid heating cyclic heat treatment on mechanical properties of a TiAl based alloy (Ti 33Al 3Cr) were studied by means of an induction heating machine. The results show that: 1) fine fully lamellar microstructure with colony size of about 50 μm and lamellar spacing of about 0.12 μm can be obtained; 2) the compression mechanical properties can be improved to a large extent and the best comprehensive compression mechanical properties can reach the yield stress 745 MPa, the large flow stress 1 672 MPa and the compression ratio 19.4%; and 3) the compression fracture at room temperature after induction heat treatment and aging is still typical cleavage fracture.展开更多
Based on Fabry model and finite-different time-domain(FDTD) method, the plasmonic structure composed of a metal-insulator-metal(MIM) bus waveguide and a side-coupled resonator was investigated. It is found that the tr...Based on Fabry model and finite-different time-domain(FDTD) method, the plasmonic structure composed of a metal-insulator-metal(MIM) bus waveguide and a side-coupled resonator was investigated. It is found that the transmission features can be regulated by the cavity width and coupling distance. Electromagnetically induced transparency(EIT)-like transmission can be excited by adding an identical resonator on the pre-existing structure. Combining the foregoing theoretical analysis with coupled mode theory(CMT), the formation process of the EIT-like transmission was detailedly analyzed. EIT-like transmission can also be excited in plasmonic structure with two detuned resonators. By altering the structure parameters, the transparency window can be purposefully modulated. With the merits of compact structure and simplicity in fabrication, the proposed structures may have a broad prospect of applications in highly integrated optical circuits.展开更多
On the basis of KDD(Knowledge Discovery based on Database), this paper proposesthe general framework of open KDD system, discusses its theoretical foundation and realization of technology of its key technology-double ...On the basis of KDD(Knowledge Discovery based on Database), this paper proposesthe general framework of open KDD system, discusses its theoretical foundation and realization of technology of its key technology-double base cooperating mechanism, and especially introduces themining method of cause-and-effect rule. The result of initial illustration shows that the structure ofKDD is effective and available.展开更多
Background:In our previous study,a strain EBS03 with good biocontrol potential was screened out of 48 strains of cotton endophyte Bacillus subtilis by evaluating the controlling effect against cotton Verticillium wilt...Background:In our previous study,a strain EBS03 with good biocontrol potential was screened out of 48 strains of cotton endophyte Bacillus subtilis by evaluating the controlling effect against cotton Verticillium wilt.However,its mechanism for controlling Verticillium wilt remains unclear.The objective of this study was to further clarify its con-trolling effect and mechanism against cotton Verticillium wilt.Results:The results of confrontation culture test and double buckle culture test showed that the inhibitory effects of EBS03 volatile and nonvolatile metabolite on mycelium growth of Verticillium dahliae were 70.03%and 59.00%,respectively;the inhibitory effects of sporulation and microsclerotia germination were 47.16%and 70.06%,respec-tively.In the greenhouse test,the EBS03 fermentation broth root irrigation had the highest controlling effect at 87.11%on cotton Verticillium wilt,and significantly promoted the growth of cotton seedlings.In the field experi-ment,the controlling effect of EBS03 fermentation broth to cotton Verticillium wilt was 42.54%at 60 days after cotton sowing,and the boll number per plant and boll weight in EBS03 fermentation broth seed soaking,root irrigation,and spraying treatments significantly increased by 19.48%and 7.42%,30.90%and 2.62%,15.99%and 9.20%,respec-tively.Furthermore,EBS03 improved the resistance of cotton leaves against the infection of V.dahliae,and induced the outbreak of reactive oxygen species and accumulation of callose.In addition,the results of real time fluorescent quantitative polymerase chain reaction(RT-qPCR)detection showed that EBS03 significantly induced upregulation expression level of defense-related genes PAL,POD,PPO,and PR10 in cotton leaves,enhanced cotton plant resistance to V.dahliae,and inhibited colonization level of this fungal pathogen in cotton.Conclusion:Bacillus subtilis EBS03 has a good biological defense capability,which can inhibit the growth and coloni-zation level of V.dahliae,and activate the resistance of cotton to Verticillium wilt,thus increase cotton yield.展开更多
Vascular remodeling is the essential pathogenic process of various cardiovascular disorders,including hypertension,atherosclerosis,stroke,and restenosis after vein graft.The main characterization of vascular remodelin...Vascular remodeling is the essential pathogenic process of various cardiovascular disorders,including hypertension,atherosclerosis,stroke,and restenosis after vein graft.The main characterization of vascular remodeling is abnormal variations of vascular cell phenotype,morphological structure and functions such as migration,hypertrophy,proliferation and apoptosis.Numerous researches revealed that mechanical stress,including shear stress and cyclic stretch,participates in physiological vascular homeostasis,or pathophysiological vascular remodeling.The understanding of mechanobiological mechanism in vascular remodeling will play a unique role in understanding human physiology and disease,and will generate important theoretical and clinical significance [2].Non-coding RNAs are newly recognized RNAs which cannot be translated into proteins but are involved in epigenetic modification of gene regulation.The studies revealed that non-coding RNAs,such as microRNAs(miRNAs)and long noncoding RNAs(long ncRNAs,IncRNA),as well as small interfering RNAs(siRNAs),piwi-interacting RNAs(piRNAs),small nucleolar RNAs(snoRNAs),play essential roles in the regulation of various processes,such as metabolism,development,cell proliferation,cell apoptosis,cell differentiation,oncogenesis and vascular homeostasis[5].However,the roles of non-coding RNAs in the cardiovascular system under mechanical stresses are still not clarified.Our recent researches detected the mechanical regulation of IncRNAs and miRNAs in vascular remodeling.LncRNAs are non-protein-coding transcripts that are longer than 200 nucleotides(nt),which is an arbitrary cut-off value that distinguishes these transcripts from other small RNAs.Unlike the well-established mechanism of microRNA action,the functional mode of IncRNAs is not fully understood.Increasing evidence shows that IncRNAs modulate gene expression via a multilevel-regulated pathway.Given their large number and complicated functional modes,lncRNAs are emerging as important regulators of a variety of cellular responses,developmental processes and diseases.Using a gene microarray,we screened the differences in the IncRNAs and mRNAs between spontaneously hypertensive rats(SHR)and Wistar Kyoto rats(WKY).The results showed that 68 IncRNAs and 255 mRNAs were up-regulated in the aorta of SHR,while 167 IncRNAs and 272 mRNAs were down-regulated.Expressions of the screened IncRNAs,including XR007793,were validated by real-time PCR.A co-expression network was composed,and gene function was analysed using Ingenuity Pathway Analysis.In vitro,vascular smooth muscle cells(VSMCs)were subjected to cyclic stretch at a magnitude of 5%(physiological normotensive cyclic stretch)or 15%(pathological hypertensive cyclic stretch)by Flexercell-5000TM.15%-cyclic-stretch increased XR007793 expression.XR007793 knockdown attenuated VSMC proliferation and migration and inhibited co-expressed genes such as signal transducers and activators of transcription 2(stat2),LIM domain only 2(lmo2)and interferon regulatory factor 7(irf7)[4].Illuminating the role of IncRNAs in vascular remodeling induced by hyper mechanical stretch may provide deeper insight into the mechanobiological mechanism underlying hypertension,and contribute to identifying potential targets for hypertension therapy.miRNAs are endogenous,non-coding,single-stranded RNAs of 18-22 nucleotides that constitute a novel class of gene regulators.miRNAs bind to their target genes within their 3’-untranslated regions(3’-UTRs),leading to direct degradation of mRNA or translational repression by a complete,i.e.in plants,or incomplete,i.e.in animals,complement respectively.Our resent works revealed several important mechano-responsive miRNA and their potential effects in vascular remodeling.Forexample,miRNA-33 is regulated by cyclic stretch in the grafted vessels,which targets to BMP3 and subsequent modulates smad signaling pathway.The miRNA-33-BMP3-smad pathway protects against venous VSMC proliferation in response to arterial cyclic stretch.Therefore,miRNA-33 may be a potential therapeutic target in autologous vein grafted surgery,and locally overexpression of miR-33 may attenuates neointimal hyperplasia of grafted human saphenous vein [3].The unpublished data revealed that 15%cyclic stretch also significantly elevated the expression of miRNA-124-3p which bound to the 3’UTR of Lmna mRNA,and then negatively regulated protein expression of lamin A/C which is the important skeletal proteins in nucleus.In addition to primary intracellular locations of miRNAs,our recent study showed that miRNAs can be secreted and protected extracellularly via inclusion into membrane-derived vesicles including microparticles.Microparticles are extracellular vesicles ranging from 0.1 to 1μm in size and have been shown to deliver various bioactive molecules,i.e.,chemokines,enzymes and miRNAs,to recipient cells.Increasing evidence shows that microparticles play a pivotal role in many pathological processes,such as cancer,inflammatory diseases and cardiovascular disease.Our present study showed that platelet-derived microparticles(PMPs),which are released by active platelets,are important vehicles for communication and play crucial roles in inducing abnormal EC proliferation in hypertension.In briefly,EC proliferation was increased in renal hypertensive rats established by abdominal aortic coarctation compared to control rats and that elevated thrombin in plasma promoted platelet activation,which may induce the release of PMPs.miRNA array and qPCR revealed a higher level of miRNA-142-3p in platelets and PMPs.In vitro,PMPs delivered miRNA-142-3p into ECs and enhanced EC proliferation via Bcl-2-associated transcription factor 1(BCLAF1)and its downstream genes.These results indicated that PMPs deliver miRNA-142-3p from activated platelets into ECs and that miRNA-142-3p may play important roles in EC dysfunction under hypertensive conditions and might be a novel therapeutic target for maintaining EC homeostasis in hypertension[1].These results provide possible mechanisms by which non-coding RNAs regulate cellular functions under different mechanical stresses,and suggest a novel potential therapeutic approach for vascular remodeling.The further studies on noncoding RNAs may provide new insight into understanding the mechanism of vascular remodeling in different various cardiovascular disorders,and may provide novel targets for the maintenance of vascular homeostasis.展开更多
Osteoporosis and osteopenia are major health issues that mainly affect elderly people,women after menopause and immobilized patients.Our previous studies have proved that sclerostin antibody(Scl-Ab)can dramatically en...Osteoporosis and osteopenia are major health issues that mainly affect elderly people,women after menopause and immobilized patients.Our previous studies have proved that sclerostin antibody(Scl-Ab)can dramatically enhance bone formation and reduce bone resorption in a severe osteoporosis rat model with the combination of ovariectomy(OVX)and hindlimb immobilization(HLS).However,the mechanism in the cellular level is unclear.The objective of this study is to assess the effect of Scl-Ab on osteocytic morphology change in a combined OVX and HLS rat model via quantification of long-and short-axis and the ratio and osteocyte volume in midshaft cortical bone.Four-month-old virgin female SD rats were divided into 7 groups(n=11 per group):Sham+Veh,Sham+HLS+Veh,Sham+HLS+Scl-Ab,OVX+Veh,OVX+Scl-Ab,OVX+HLS+Veh,OVX+HLS+Scl-Ab.HLS was performed 2 weeks after sham or OVX surgery;and treatment was initiated at the time of HLS.Scl-Ab(25 mg/kg)or vehicle was subcutaneously injected twice per week for 5 weeks.Femurs were harvested at the end of study and embedded in PMMA and polished for SEM imaging.Cortical bone mid shaft osteocyte number per bone area was quantified under 1K magnification;the ratios between long axis and short axis of osteocytes were quantified under 2K magnification;osteocyte dendrite number and surface area were quantified under 5K magnification.Osteocyte dendrites width was quantified using 10K magnification.All the quantification was done by ImageJ.We have reported that multiple morphological and structural changes in osteocytes,including a decreased osteocyte density and reduced osteocyte dendrite number in HLS,OVX or the combination group and Scl-Ab’s ability to abolish these unfavorable alterations.We continued our SEM analysis on osteocytes and discovered that the oval shape of osteocyte under HLS,OVX or HLS+OVX has been distorted toward a spindle-like shape,with relatively longer long axis and shorter short axis,assuming osteocyte has a perfect spheroid shape.The ratio between long-and short-axis showed an increased trend in OVX and HLS condition,but Scl-Ab inhibited these increases(P<0.001,P<0.01,respectively).The volume decreased in HLS,OVX group,but Scl-Ab maintained osteocytes’volume in HLS condition(P<0.001).It indicates that cortical bone responds to HLS and/or OVX and Scl-Ab treatment via multiple cellular mechanisms,including density of osteocyte,dendrite number and osteocyte shape.The change of osteocyte shape may imply an altered cytoskeleton system within osteocyte and a subsequent disruption of mechanosensing ability for osteocyte,which lead to bone loss macroscopically.These data suggest Scl-Ab’s therapeutic potential could be related with its ability to maintain osteocyte’s morphologic and structural changes induced by OVX,HLS or both.展开更多
Introduction Thrombosis is the formation of a blood clot in a blood vessel. When thrombosis happens in the brain,it would cause stroke; when happens in the heart,it would cause heart attack. If a thrombus breaks and t...Introduction Thrombosis is the formation of a blood clot in a blood vessel. When thrombosis happens in the brain,it would cause stroke; when happens in the heart,it would cause heart attack. If a thrombus breaks and travels to the lung,it would展开更多
A transformation of naphthalene-based coalescenced mesophase pitch(NMP)to mesophase microbeads was achieved by heating a mixture of NMP and fullerene(C_(60)).This is different from the conventional process of the liqu...A transformation of naphthalene-based coalescenced mesophase pitch(NMP)to mesophase microbeads was achieved by heating a mixture of NMP and fullerene(C_(60)).This is different from the conventional process of the liquid-phase carbonization of isotropic pitch to the emergence of carbon microbeads in the matrix and finally their growth to form a 100%anisotropic bulk meso-phase,but rather a reverse transformation.The effects of C_(60) loading and reaction temperature on the morphological transformation of mesophase were investigated by polarizing optical and scanning electron microscopies.The physical changes in the NMP induced by C_(60) were characterized by thermogravimetric analysis,Fourier transform infrared spectroscopy,X-ray diffractometry and Raman spectroscopy.The results show that the coalesced NMP can be converted to a spherical type at 300-320℃ with the addition of 5%C_(60),and the size of the mesophase microbeads increases with increasing temperature.Furthermore,a model is established to ex-plain the unique induction effect of C_(60) in the transformation process.This work makes the morphological transformation of MP con-trollable,and provides a new idea for the understanding and research of mesophase pitch.展开更多
文摘The effects of rapid heating cyclic heat treatment on mechanical properties of a TiAl based alloy (Ti 33Al 3Cr) were studied by means of an induction heating machine. The results show that: 1) fine fully lamellar microstructure with colony size of about 50 μm and lamellar spacing of about 0.12 μm can be obtained; 2) the compression mechanical properties can be improved to a large extent and the best comprehensive compression mechanical properties can reach the yield stress 745 MPa, the large flow stress 1 672 MPa and the compression ratio 19.4%; and 3) the compression fracture at room temperature after induction heat treatment and aging is still typical cleavage fracture.
基金Project(61275174)supported by the National Natural Science Foundations of ChinaProject(20100162110068)supported by the Doctoral Program of Higher Education of China
文摘Based on Fabry model and finite-different time-domain(FDTD) method, the plasmonic structure composed of a metal-insulator-metal(MIM) bus waveguide and a side-coupled resonator was investigated. It is found that the transmission features can be regulated by the cavity width and coupling distance. Electromagnetically induced transparency(EIT)-like transmission can be excited by adding an identical resonator on the pre-existing structure. Combining the foregoing theoretical analysis with coupled mode theory(CMT), the formation process of the EIT-like transmission was detailedly analyzed. EIT-like transmission can also be excited in plasmonic structure with two detuned resonators. By altering the structure parameters, the transparency window can be purposefully modulated. With the merits of compact structure and simplicity in fabrication, the proposed structures may have a broad prospect of applications in highly integrated optical circuits.
文摘On the basis of KDD(Knowledge Discovery based on Database), this paper proposesthe general framework of open KDD system, discusses its theoretical foundation and realization of technology of its key technology-double base cooperating mechanism, and especially introduces themining method of cause-and-effect rule. The result of initial illustration shows that the structure ofKDD is effective and available.
基金This work was supported by the National Natural Science Foundation of China(No.32201752)the Central Public-interest Scientific Institution Basal Research Fund(No.1610162022018),Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences.
文摘Background:In our previous study,a strain EBS03 with good biocontrol potential was screened out of 48 strains of cotton endophyte Bacillus subtilis by evaluating the controlling effect against cotton Verticillium wilt.However,its mechanism for controlling Verticillium wilt remains unclear.The objective of this study was to further clarify its con-trolling effect and mechanism against cotton Verticillium wilt.Results:The results of confrontation culture test and double buckle culture test showed that the inhibitory effects of EBS03 volatile and nonvolatile metabolite on mycelium growth of Verticillium dahliae were 70.03%and 59.00%,respectively;the inhibitory effects of sporulation and microsclerotia germination were 47.16%and 70.06%,respec-tively.In the greenhouse test,the EBS03 fermentation broth root irrigation had the highest controlling effect at 87.11%on cotton Verticillium wilt,and significantly promoted the growth of cotton seedlings.In the field experi-ment,the controlling effect of EBS03 fermentation broth to cotton Verticillium wilt was 42.54%at 60 days after cotton sowing,and the boll number per plant and boll weight in EBS03 fermentation broth seed soaking,root irrigation,and spraying treatments significantly increased by 19.48%and 7.42%,30.90%and 2.62%,15.99%and 9.20%,respec-tively.Furthermore,EBS03 improved the resistance of cotton leaves against the infection of V.dahliae,and induced the outbreak of reactive oxygen species and accumulation of callose.In addition,the results of real time fluorescent quantitative polymerase chain reaction(RT-qPCR)detection showed that EBS03 significantly induced upregulation expression level of defense-related genes PAL,POD,PPO,and PR10 in cotton leaves,enhanced cotton plant resistance to V.dahliae,and inhibited colonization level of this fungal pathogen in cotton.Conclusion:Bacillus subtilis EBS03 has a good biological defense capability,which can inhibit the growth and coloni-zation level of V.dahliae,and activate the resistance of cotton to Verticillium wilt,thus increase cotton yield.
基金supported by grants from the National Natural Science Foundation of China ( 11625209,11572199,31670958)
文摘Vascular remodeling is the essential pathogenic process of various cardiovascular disorders,including hypertension,atherosclerosis,stroke,and restenosis after vein graft.The main characterization of vascular remodeling is abnormal variations of vascular cell phenotype,morphological structure and functions such as migration,hypertrophy,proliferation and apoptosis.Numerous researches revealed that mechanical stress,including shear stress and cyclic stretch,participates in physiological vascular homeostasis,or pathophysiological vascular remodeling.The understanding of mechanobiological mechanism in vascular remodeling will play a unique role in understanding human physiology and disease,and will generate important theoretical and clinical significance [2].Non-coding RNAs are newly recognized RNAs which cannot be translated into proteins but are involved in epigenetic modification of gene regulation.The studies revealed that non-coding RNAs,such as microRNAs(miRNAs)and long noncoding RNAs(long ncRNAs,IncRNA),as well as small interfering RNAs(siRNAs),piwi-interacting RNAs(piRNAs),small nucleolar RNAs(snoRNAs),play essential roles in the regulation of various processes,such as metabolism,development,cell proliferation,cell apoptosis,cell differentiation,oncogenesis and vascular homeostasis[5].However,the roles of non-coding RNAs in the cardiovascular system under mechanical stresses are still not clarified.Our recent researches detected the mechanical regulation of IncRNAs and miRNAs in vascular remodeling.LncRNAs are non-protein-coding transcripts that are longer than 200 nucleotides(nt),which is an arbitrary cut-off value that distinguishes these transcripts from other small RNAs.Unlike the well-established mechanism of microRNA action,the functional mode of IncRNAs is not fully understood.Increasing evidence shows that IncRNAs modulate gene expression via a multilevel-regulated pathway.Given their large number and complicated functional modes,lncRNAs are emerging as important regulators of a variety of cellular responses,developmental processes and diseases.Using a gene microarray,we screened the differences in the IncRNAs and mRNAs between spontaneously hypertensive rats(SHR)and Wistar Kyoto rats(WKY).The results showed that 68 IncRNAs and 255 mRNAs were up-regulated in the aorta of SHR,while 167 IncRNAs and 272 mRNAs were down-regulated.Expressions of the screened IncRNAs,including XR007793,were validated by real-time PCR.A co-expression network was composed,and gene function was analysed using Ingenuity Pathway Analysis.In vitro,vascular smooth muscle cells(VSMCs)were subjected to cyclic stretch at a magnitude of 5%(physiological normotensive cyclic stretch)or 15%(pathological hypertensive cyclic stretch)by Flexercell-5000TM.15%-cyclic-stretch increased XR007793 expression.XR007793 knockdown attenuated VSMC proliferation and migration and inhibited co-expressed genes such as signal transducers and activators of transcription 2(stat2),LIM domain only 2(lmo2)and interferon regulatory factor 7(irf7)[4].Illuminating the role of IncRNAs in vascular remodeling induced by hyper mechanical stretch may provide deeper insight into the mechanobiological mechanism underlying hypertension,and contribute to identifying potential targets for hypertension therapy.miRNAs are endogenous,non-coding,single-stranded RNAs of 18-22 nucleotides that constitute a novel class of gene regulators.miRNAs bind to their target genes within their 3’-untranslated regions(3’-UTRs),leading to direct degradation of mRNA or translational repression by a complete,i.e.in plants,or incomplete,i.e.in animals,complement respectively.Our resent works revealed several important mechano-responsive miRNA and their potential effects in vascular remodeling.Forexample,miRNA-33 is regulated by cyclic stretch in the grafted vessels,which targets to BMP3 and subsequent modulates smad signaling pathway.The miRNA-33-BMP3-smad pathway protects against venous VSMC proliferation in response to arterial cyclic stretch.Therefore,miRNA-33 may be a potential therapeutic target in autologous vein grafted surgery,and locally overexpression of miR-33 may attenuates neointimal hyperplasia of grafted human saphenous vein [3].The unpublished data revealed that 15%cyclic stretch also significantly elevated the expression of miRNA-124-3p which bound to the 3’UTR of Lmna mRNA,and then negatively regulated protein expression of lamin A/C which is the important skeletal proteins in nucleus.In addition to primary intracellular locations of miRNAs,our recent study showed that miRNAs can be secreted and protected extracellularly via inclusion into membrane-derived vesicles including microparticles.Microparticles are extracellular vesicles ranging from 0.1 to 1μm in size and have been shown to deliver various bioactive molecules,i.e.,chemokines,enzymes and miRNAs,to recipient cells.Increasing evidence shows that microparticles play a pivotal role in many pathological processes,such as cancer,inflammatory diseases and cardiovascular disease.Our present study showed that platelet-derived microparticles(PMPs),which are released by active platelets,are important vehicles for communication and play crucial roles in inducing abnormal EC proliferation in hypertension.In briefly,EC proliferation was increased in renal hypertensive rats established by abdominal aortic coarctation compared to control rats and that elevated thrombin in plasma promoted platelet activation,which may induce the release of PMPs.miRNA array and qPCR revealed a higher level of miRNA-142-3p in platelets and PMPs.In vitro,PMPs delivered miRNA-142-3p into ECs and enhanced EC proliferation via Bcl-2-associated transcription factor 1(BCLAF1)and its downstream genes.These results indicated that PMPs deliver miRNA-142-3p from activated platelets into ECs and that miRNA-142-3p may play important roles in EC dysfunction under hypertensive conditions and might be a novel therapeutic target for maintaining EC homeostasis in hypertension[1].These results provide possible mechanisms by which non-coding RNAs regulate cellular functions under different mechanical stresses,and suggest a novel potential therapeutic approach for vascular remodeling.The further studies on noncoding RNAs may provide new insight into understanding the mechanism of vascular remodeling in different various cardiovascular disorders,and may provide novel targets for the maintenance of vascular homeostasis.
文摘Osteoporosis and osteopenia are major health issues that mainly affect elderly people,women after menopause and immobilized patients.Our previous studies have proved that sclerostin antibody(Scl-Ab)can dramatically enhance bone formation and reduce bone resorption in a severe osteoporosis rat model with the combination of ovariectomy(OVX)and hindlimb immobilization(HLS).However,the mechanism in the cellular level is unclear.The objective of this study is to assess the effect of Scl-Ab on osteocytic morphology change in a combined OVX and HLS rat model via quantification of long-and short-axis and the ratio and osteocyte volume in midshaft cortical bone.Four-month-old virgin female SD rats were divided into 7 groups(n=11 per group):Sham+Veh,Sham+HLS+Veh,Sham+HLS+Scl-Ab,OVX+Veh,OVX+Scl-Ab,OVX+HLS+Veh,OVX+HLS+Scl-Ab.HLS was performed 2 weeks after sham or OVX surgery;and treatment was initiated at the time of HLS.Scl-Ab(25 mg/kg)or vehicle was subcutaneously injected twice per week for 5 weeks.Femurs were harvested at the end of study and embedded in PMMA and polished for SEM imaging.Cortical bone mid shaft osteocyte number per bone area was quantified under 1K magnification;the ratios between long axis and short axis of osteocytes were quantified under 2K magnification;osteocyte dendrite number and surface area were quantified under 5K magnification.Osteocyte dendrites width was quantified using 10K magnification.All the quantification was done by ImageJ.We have reported that multiple morphological and structural changes in osteocytes,including a decreased osteocyte density and reduced osteocyte dendrite number in HLS,OVX or the combination group and Scl-Ab’s ability to abolish these unfavorable alterations.We continued our SEM analysis on osteocytes and discovered that the oval shape of osteocyte under HLS,OVX or HLS+OVX has been distorted toward a spindle-like shape,with relatively longer long axis and shorter short axis,assuming osteocyte has a perfect spheroid shape.The ratio between long-and short-axis showed an increased trend in OVX and HLS condition,but Scl-Ab inhibited these increases(P<0.001,P<0.01,respectively).The volume decreased in HLS,OVX group,but Scl-Ab maintained osteocytes’volume in HLS condition(P<0.001).It indicates that cortical bone responds to HLS and/or OVX and Scl-Ab treatment via multiple cellular mechanisms,including density of osteocyte,dendrite number and osteocyte shape.The change of osteocyte shape may imply an altered cytoskeleton system within osteocyte and a subsequent disruption of mechanosensing ability for osteocyte,which lead to bone loss macroscopically.These data suggest Scl-Ab’s therapeutic potential could be related with its ability to maintain osteocyte’s morphologic and structural changes induced by OVX,HLS or both.
基金supported by the National Science Foundation CAREER Award CBET-0133775 and CBET-0754158,REU grant,and graduate fellowship from the CUNY
文摘Introduction Thrombosis is the formation of a blood clot in a blood vessel. When thrombosis happens in the brain,it would cause stroke; when happens in the heart,it would cause heart attack. If a thrombus breaks and travels to the lung,it would
文摘A transformation of naphthalene-based coalescenced mesophase pitch(NMP)to mesophase microbeads was achieved by heating a mixture of NMP and fullerene(C_(60)).This is different from the conventional process of the liquid-phase carbonization of isotropic pitch to the emergence of carbon microbeads in the matrix and finally their growth to form a 100%anisotropic bulk meso-phase,but rather a reverse transformation.The effects of C_(60) loading and reaction temperature on the morphological transformation of mesophase were investigated by polarizing optical and scanning electron microscopies.The physical changes in the NMP induced by C_(60) were characterized by thermogravimetric analysis,Fourier transform infrared spectroscopy,X-ray diffractometry and Raman spectroscopy.The results show that the coalesced NMP can be converted to a spherical type at 300-320℃ with the addition of 5%C_(60),and the size of the mesophase microbeads increases with increasing temperature.Furthermore,a model is established to ex-plain the unique induction effect of C_(60) in the transformation process.This work makes the morphological transformation of MP con-trollable,and provides a new idea for the understanding and research of mesophase pitch.