期刊文献+
共找到100篇文章
< 1 2 5 >
每页显示 20 50 100
Automatic Parameters Selection for SVM Based on PSO
1
作者 ZHANG Mingfeng ZHU Yinghua +1 位作者 ZHENG Xu LIU Yu 《现代电子技术》 2007年第1期121-123,共3页
Motivated by the fact that automatic parameters selection for Support Vector Machine(SVM) is an important issue to make SVM practically useful and the common used Leave-One-Out(LOO) method is complex calculation and t... Motivated by the fact that automatic parameters selection for Support Vector Machine(SVM) is an important issue to make SVM practically useful and the common used Leave-One-Out(LOO) method is complex calculation and time consuming,an effective strategy for automatic parameters selection for SVM is proposed by using the Particle Swarm Optimization(PSO) in this paper.Simulation results of practice data model demonstrate the effectiveness and high efficiency of the proposed approach. 展开更多
关键词 支持向量机 人工智能 参数选择 粒子群最优化
在线阅读 下载PDF
Parameter selection of support vector machine for function approximation based on chaos optimization 被引量:18
2
作者 Yuan Xiaofang Wang Yaonan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期191-197,共7页
The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results... The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation. 展开更多
关键词 learning systems support vector machines (SVM) approximation theory parameter selection optimization.
在线阅读 下载PDF
用于调节参数区间选择的交叉验证方法 被引量:1
3
作者 宁保斌 王士同 《小型微型计算机系统》 北大核心 2025年第1期104-110,共7页
现有的交叉验证方法在选择模型的调节参数时,一般在给定的参数值中选出一个最优的调节参数,而为了应对数值的复杂性和提高选择便利性,现实应用中往往更希望选出一个参数区间,也利于观察算法的稳定性.针对这个问题,本文改进了块正则化m&#... 现有的交叉验证方法在选择模型的调节参数时,一般在给定的参数值中选出一个最优的调节参数,而为了应对数值的复杂性和提高选择便利性,现实应用中往往更希望选出一个参数区间,也利于观察算法的稳定性.针对这个问题,本文改进了块正则化m×2交叉验证方法,提出了一个新的模型调节参数区间选择方法,基本思想是给出多个调节参数区间,采用增量的方式,不断地增加m,进而不断地减少调节参数区间个数,最终选出一个最优的调节参数区间,在这个最优区间中任意选取调节参数,都可以作为模型的调节参数.通过大量实验,与基于交叉验证的模型调节参数选择方法(m×2交叉验证方法、2折、5折、10折交叉验证)做了对比,模型在选出的区间上的平均准确度与最优单个参数的准确度相差不大,而且在该区间上最高准确度和最低准确度的差值非常小,说明在该区间上选择参数作为调节参数性能相对稳定. 展开更多
关键词 交叉验证 模型选择 调节参数选择 区间最优 支持向量机
在线阅读 下载PDF
基于BS-1DCNN的海缆振动信号识别 被引量:1
4
作者 尚秋峰 郭家兴 黄达 《智能系统学报》 CSCD 北大核心 2024年第4期874-884,共11页
光纤振动信号是非线性的,传统的非线性振动信号识别方法通常需要信号分析和特征选择,既耗时又复杂。本文提出一种光纤振动信号识别新方法,可以直接提取特征,对原始信号进行分类,简化识别过程。本方法用支持向量机代替Softmax分类器,优... 光纤振动信号是非线性的,传统的非线性振动信号识别方法通常需要信号分析和特征选择,既耗时又复杂。本文提出一种光纤振动信号识别新方法,可以直接提取特征,对原始信号进行分类,简化识别过程。本方法用支持向量机代替Softmax分类器,优化一维卷积神经网络(one-dimensional convolution neural network,1DCNN),以提高1DCNN结果在小样本条件下的稳定性。采用鸟群算法(bird swarm algorithm,BSA)对支持向量机(support vector machine,SVM)参数进行了优化,有效地提高识别精度。将本文提出的BS-1DCNN方法与1DCNN、VMD-GA-SVM、VMD-PSO-SVM、VMD-BSA-SVM共4种方法进行比较,结果表明,BS-1DCNN在识别准确率和测试时间方面性能表现良好。该算法能有效提高海缆振动信号识别率,且在不同样本比例下均能达到较好的识别效果。 展开更多
关键词 振动信号 故障识别 鸟群优化 一维卷积神经网络 支持向量机 特征选择 参数优化 支持向量机
在线阅读 下载PDF
支持向量机参数选择方法研究 被引量:66
5
作者 董春曦 饶鲜 +1 位作者 杨绍全 徐松涛 《系统工程与电子技术》 EI CSCD 北大核心 2004年第8期1117-1120,共4页
针对支持向量机的参数选择问题,提出了一种最优化选择方法。通过分析支持向量个数与留一法的关系以及支持向量机参数的几何意义和对推广能力的影响,该算法利用支持向量机比例来衡量参数选择时推广能力的变化,使用不同的规则更新核参数... 针对支持向量机的参数选择问题,提出了一种最优化选择方法。通过分析支持向量个数与留一法的关系以及支持向量机参数的几何意义和对推广能力的影响,该算法利用支持向量机比例来衡量参数选择时推广能力的变化,使用不同的规则更新核参数和惩罚因子,简化了参数选择的难度。理论分析证明这种最小最大化参数选择方法可以选择支持向量机参数,仿真试验验证了该方法的有效性。 展开更多
关键词 支持向量机 推广能力估计 参数选择 最小最大化
在线阅读 下载PDF
基于粒子群优化算法的支持向量机参数选择及其应用 被引量:130
6
作者 邵信光 杨慧中 陈刚 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第5期740-743,748,共5页
参数选择是支持向量机(SVM)研究领域的重要问题,它的本质是一个优化搜索过程,考虑到进化算法在求解优化问题上的有效性,提出了以最小化k-fold交叉验证误差为目标.粒子群优化(PSO)算法为寻优技巧的SVM参数调整方法.通过仿真例子验证该... 参数选择是支持向量机(SVM)研究领域的重要问题,它的本质是一个优化搜索过程,考虑到进化算法在求解优化问题上的有效性,提出了以最小化k-fold交叉验证误差为目标.粒子群优化(PSO)算法为寻优技巧的SVM参数调整方法.通过仿真例子验证该方法的有效性后,用其建立了聚丙烯腈生产过程中数均分子量的软测量模型,结果表明该方法有效. 展开更多
关键词 支持向量机 参数选择 粒子群优化 聚丙烯腈 软测量
在线阅读 下载PDF
基于遗传算法优化参数的支持向量机短期负荷预测方法 被引量:135
7
作者 吴景龙 杨淑霞 刘承水 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期180-184,共5页
通过研究参数选择和支持向量机预测能力的影响,建立利用遗传算法优化参数的支持向量机负荷预测系统。通过遗传算法对支持向量机(SVM)预测模型的各项参数进行寻优预处理,找到最优的参数取值,然后,代入支持向量机SVM预测模型中,得基于遗... 通过研究参数选择和支持向量机预测能力的影响,建立利用遗传算法优化参数的支持向量机负荷预测系统。通过遗传算法对支持向量机(SVM)预测模型的各项参数进行寻优预处理,找到最优的参数取值,然后,代入支持向量机SVM预测模型中,得基于遗传算法的支持向量机(GA-SVM)模型,利用此模型对短期电力负荷进行预测研究。通过实例验证,选择河北某地区2005-03-02至2007-05-22每天各个时点的数据进行分析,并且选择SVM模型与BP(Back propagation)神经网络进行对比。研究结果表明:用GA-SVM算法得到的均方根相对误差仅为2.25%,比用SVM模型和BP神经网络所得的均方根相对误差比分别低0.58%和1.93%。所提出的测试方法克服了传统参数选择方法存在的缺点(如研究者往往凭经验和有限的实验给定一组参数,而不讨论参数制定的合理性),提高了支持向量机的预测精度。 展开更多
关键词 遗传算法 支持向量机 参数优化 负荷预测
在线阅读 下载PDF
基于遗传优化的最小二乘支持向量机风电场风速短期预测 被引量:45
8
作者 杨洪 古世甫 +1 位作者 崔明东 孙禹 《电力系统保护与控制》 EI CSCD 北大核心 2011年第11期44-48,61,共6页
风电场短期风速的准确预测能为风电并网运行的规划、调度、运行和控制提供及时有效的信息。支持向量机基于结构风险最小化原理,从整体上考虑曲线的平滑度对数据进行拟合,对风速预测时能及时跟踪其变化趋势。针对支持向量参数难以确定问... 风电场短期风速的准确预测能为风电并网运行的规划、调度、运行和控制提供及时有效的信息。支持向量机基于结构风险最小化原理,从整体上考虑曲线的平滑度对数据进行拟合,对风速预测时能及时跟踪其变化趋势。针对支持向量参数难以确定问题,采用遗传算法对最小二乘支持向量机惩罚系数C和核参数σ2寻优,在对参数遗传编码时,通过对数变换编码提高了搜索灵敏度,加快了模型收敛速度。最终利用现场连续150h实测风速样本,对其中最后12h进行预测,结果与广义回归神经网络(GRNN)相比,表明LS-SVM有更好的泛化能力,且取得了相对误差绝对值的平均值为8.32%的良好效果。 展开更多
关键词 遗传算法 支持向量机 参数优化 短期风速预测
在线阅读 下载PDF
基于遗传算法的SVM参数组合优化 被引量:47
9
作者 刘鲭洁 陈桂明 +1 位作者 刘小方 杨庆 《计算机应用与软件》 CSCD 北大核心 2012年第4期94-96,100,共4页
核函数类型、核函数参数及错误惩罚因子是影响SVM学习能力和泛化能力的关键因素。实际应用中选择上述SVM参数组合多依赖经验或人工尝试,通常很难选择到最优参数组合。提出一种基于遗传算法的SVM优化技术,针对优化对象设计二进制编码基... 核函数类型、核函数参数及错误惩罚因子是影响SVM学习能力和泛化能力的关键因素。实际应用中选择上述SVM参数组合多依赖经验或人工尝试,通常很难选择到最优参数组合。提出一种基于遗传算法的SVM优化技术,针对优化对象设计二进制编码基因串和相应遗传算子,能够实现同时对上述三个参数组合的优化。在UCI标准数据库上的实验结果说明了提出方法的有效性。 展开更多
关键词 支持向量机 核函数 参数选择 编码 遗传算法
在线阅读 下载PDF
短期负荷预测的支持向量机参数选择方法 被引量:17
10
作者 杨国健 杨镜非 +3 位作者 童开蒙 程浩忠 孙毅斌 叶清 《电力系统及其自动化学报》 CSCD 北大核心 2012年第6期148-151,共4页
支持向量机SVM(support vector machine)方法的合理参数选择对提高回归结果的准确性有重要作用。该文采用基于支持向量机短期负荷预测的参数选择方法,用遗传算法对参数种群进行编码、交叉、复制和变异,求得最优参数和最优核函数。将该... 支持向量机SVM(support vector machine)方法的合理参数选择对提高回归结果的准确性有重要作用。该文采用基于支持向量机短期负荷预测的参数选择方法,用遗传算法对参数种群进行编码、交叉、复制和变异,求得最优参数和最优核函数。将该算法应用于电力系统短期负荷预测中,应用了筛选和不筛选特征值两种方案对历史数据进行了预测。算例证明,无论是应用筛选特征值方案还是不筛选特征值方案,参数选择对预测精度提高都具有重要作用。 展开更多
关键词 支持向量机 参数选择 核函数选择 负荷预测 遗传算法
在线阅读 下载PDF
支持向量机最优模型选择的研究 被引量:49
11
作者 刘向东 骆斌 陈兆乾 《计算机研究与发展》 EI CSCD 北大核心 2005年第4期576-581,共6页
通过对核矩阵的研究,利用核矩阵的对称正定性,采用核校准的方法提出了一种SVM最优模型选择的算法———OMSA算法.利用训练样本不通过SVM标准训练和测试过程而寻求最优的核参数和相应的最优学习模型,弥补了传统SVM在模型选择上经验性强... 通过对核矩阵的研究,利用核矩阵的对称正定性,采用核校准的方法提出了一种SVM最优模型选择的算法———OMSA算法.利用训练样本不通过SVM标准训练和测试过程而寻求最优的核参数和相应的最优学习模型,弥补了传统SVM在模型选择上经验性强和计算量大的不足.采用该算法在UCI标准数据集和FERET标准人脸库上进行了实验,结果表明,通过该算法找到的核参数以及相应的核矩阵是最优的,得到的SVM分类器的错误率最小.该算法为SVM最优模型选择提供了一种可行的方法,同时对其他基于核的学习方法也具有一定的参考价值. 展开更多
关键词 支持向量机 核参数 核校准 模型选择
在线阅读 下载PDF
最小二乘支持向量机参数选择方法及其应用研究 被引量:103
12
作者 郭辉 刘贺平 王玲 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第7期2033-2036,2051,共5页
针对最小二乘支持向量机参数选择问题,提出了一种基于三步搜索技术的参数选择方法,理论分析表明了这种方法的有效性和优越性,可以优化选择最小二乘支持向量机参数。然后把该方法用于钢材淬透性建模中的参数选择,仿真结果表明,这种方法... 针对最小二乘支持向量机参数选择问题,提出了一种基于三步搜索技术的参数选择方法,理论分析表明了这种方法的有效性和优越性,可以优化选择最小二乘支持向量机参数。然后把该方法用于钢材淬透性建模中的参数选择,仿真结果表明,这种方法可以得到优化的参数,从而获得精确的建模效果。 展开更多
关键词 最小二乘支持向量机 参数选择 三步搜索 淬透性
在线阅读 下载PDF
采用遗传算法优化最小二乘支持向量机参数的方法 被引量:50
13
作者 王克奇 杨少春 +1 位作者 戴天虹 白雪冰 《计算机应用与软件》 CSCD 2009年第7期109-111,共3页
支持向量机是建立在统计学习理论上的一种学习算法,较好地解决了小样本学习问题。由不同的参数和核函数构造的支持向量机在性能上存在很大差异,而在参数和核函数的选择上目前还没有明确的理论依据。针对支持向量机的参数选择问题,提出... 支持向量机是建立在统计学习理论上的一种学习算法,较好地解决了小样本学习问题。由不同的参数和核函数构造的支持向量机在性能上存在很大差异,而在参数和核函数的选择上目前还没有明确的理论依据。针对支持向量机的参数选择问题,提出了一种采用遗传算法优化最小二乘支持向量机参数的方法。结合LS-SVM lab工具箱,在MATLAB实验平台的仿真实验表明,该方法提高了支持向量机的参数选择效率,得到的参数对测试样本的分类结果是最优的,从而避免了人为设定参数的不足,同时缩短了优化时间。 展开更多
关键词 最小二乘支持向量机 遗传算法 参数选择 LS-SVMlab工具箱
在线阅读 下载PDF
基于差分进化算法的支持向量机参数选择 被引量:18
14
作者 陈涛 雍龙泉 +1 位作者 邓方安 杨晓 《计算机工程与应用》 CSCD 北大核心 2011年第5期24-26,共3页
支持向量机参数是影响其性能的重要因素,为了进一步提高支持向量机分类精度和泛化能力,提出了基于差分进化算法的SVM参数选择。以样本误判率最小为优化准则,利用差分进化算法对SVM参数进行优化选择。实验结果表明,利用差分进化算法选择... 支持向量机参数是影响其性能的重要因素,为了进一步提高支持向量机分类精度和泛化能力,提出了基于差分进化算法的SVM参数选择。以样本误判率最小为优化准则,利用差分进化算法对SVM参数进行优化选择。实验结果表明,利用差分进化算法选择SVM参数,加快了参数搜索的速度,提高了SVM分类精度,该方法具有良好的鲁棒性和较强的全局寻优能力。 展开更多
关键词 支持向量机 差分进化算法 参数选择
在线阅读 下载PDF
基于类间距的径向基函数-支持向量机核参数评价方法分析 被引量:16
15
作者 宋小杉 蒋晓瑜 +1 位作者 罗建华 姚军 《兵工学报》 EI CAS CSCD 北大核心 2012年第2期203-208,共6页
分析了径向基函数(RBF)核参数γ对空间映射结果的影响,得出3条结论。在此基础上,找到了1种新的核参数评价方法,该方法通过计算特征空间中两类之间的平均距离(ICMD)来评价γ的优劣。文章分别从理论和实验两方面证明了ICMD最大值的存在性... 分析了径向基函数(RBF)核参数γ对空间映射结果的影响,得出3条结论。在此基础上,找到了1种新的核参数评价方法,该方法通过计算特征空间中两类之间的平均距离(ICMD)来评价γ的优劣。文章分别从理论和实验两方面证明了ICMD最大值的存在性。为验证该方法的有效性,文中对7个样本集进行了两组参数选择实验:第一组实验通过ICMD找到最优核参数γ,再由10-折交叉验证得到最优惩罚因子C,称为"两步法";第二组实验采用基于10-折交叉验证的网格搜索法进行参数选择。结果显示两种方法均选择出了适当的参数,但前者花费的时间比后者大大缩短,验证了ICMD方法的有效性。 展开更多
关键词 人工智能 支持向量机 高斯核 核参数评价 参数选择
在线阅读 下载PDF
改进的基于粒子群优化的支持向量机特征选择和参数联合优化算法 被引量:38
16
作者 张进 丁胜 李波 《计算机应用》 CSCD 北大核心 2016年第5期1330-1335,共6页
针对支持向量机(SVM)中特征选择和参数优化对分类精度有较大影响,提出了一种改进的基于粒子群优化(PSO)的SVM特征选择和参数联合优化算法(GPSO-SVM),使算法在提高分类精度的同时选取尽可能少的特征数目。为了解决传统粒子群算法... 针对支持向量机(SVM)中特征选择和参数优化对分类精度有较大影响,提出了一种改进的基于粒子群优化(PSO)的SVM特征选择和参数联合优化算法(GPSO-SVM),使算法在提高分类精度的同时选取尽可能少的特征数目。为了解决传统粒子群算法在进行优化时易出现陷入局部最优和早熟的问题,该算法在PSO中引入遗传算法(GA)中的交叉变异算子,使粒子在每次迭代更新后进行交叉变异操作来避免这一问题。该算法通过粒子之间的不相关性指数来决定粒子之间的交叉配对,由粒子适应度值的大小决定其变异概率的大小,由此产生新的粒子进入到群体中。这样使得粒子跳出当前搜索到的局部最优位置,提高了群体的多样性,在全局范围内寻找更优值。在不同数据集上进行实验,与基于PSO和GA的特征选择和SVM参数联合优化算法相比,GPSO-SVM的分类精度平均提高了2%~3%,选择的特征数目减少了3%~15%。实验结果表明,所提算法的特征选择和参数优化效果更好。 展开更多
关键词 支持向量机 特征选择 参数优化 粒子群优化算法 遗传算法 不相关性指数
在线阅读 下载PDF
RBF-SVM的核参数选择方法及其在故障诊断中的应用 被引量:63
17
作者 周绍磊 廖剑 史贤俊 《电子测量与仪器学报》 CSCD 2014年第3期240-246,共7页
基于核理论的SVM中,RBF核函数应用最广,是一个普适的核函数,但其参数的选择却没有固定方法。鉴于此,本文首先分析了现有核函数参数优选算法的不足;然后在SVM网络结构分类原理的基础上提出了基于数据最大方差-关联度准则的核参数选择算法... 基于核理论的SVM中,RBF核函数应用最广,是一个普适的核函数,但其参数的选择却没有固定方法。鉴于此,本文首先分析了现有核函数参数优选算法的不足;然后在SVM网络结构分类原理的基础上提出了基于数据最大方差-关联度准则的核参数选择算法,并结合粒子群算法建立了RBF核参数的自动优选流程。将其用于模拟电路故障诊断实验,证明了所提方法具有参数选择准确、简单快速等优点,优选得到的核参数提高了故障诊断率。 展开更多
关键词 支持向量机 参数选择 粒子群算法 模拟电路 故障诊断
在线阅读 下载PDF
发动机支持向量机建模及精度影响因素 被引量:7
18
作者 陈然 孙冬野 +2 位作者 秦大同 罗勇 胡丰宾 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第4期1391-1397,共7页
针对发动机具有非线性、时变性的特点以及采用常规神经网络辨识时的过学习等问题,提出基于支持向量机(SVM)的发动机模型辨识方法。该方法以大量实测数据为基础,采用结构风险最小化准则(SRM),保证网络具有很强的推广特性。以MATLAB为平台... 针对发动机具有非线性、时变性的特点以及采用常规神经网络辨识时的过学习等问题,提出基于支持向量机(SVM)的发动机模型辨识方法。该方法以大量实测数据为基础,采用结构风险最小化准则(SRM),保证网络具有很强的推广特性。以MATLAB为平台,依据实测试验数据,研究核函数、损失函数及惩罚参数对系统辨识精度的影响,确定各参数对模型精度影响的程度。在充分考虑各参数之间交互作用的前提下,利用循环嵌套查找方法,获得使支持向量机网络辨识精度达到最优时的各参数值,并以此建立发动机转矩及油耗模型。研究结果表明:基于支持向量机的发动机模型具有较强的泛化能力,为实现发动机与传动系统共同工作的最佳匹配控制奠定了基础。 展开更多
关键词 支持向量机 发动机模型 辨识精度 参数选择
在线阅读 下载PDF
基于支持向量机的纯电动公交车充/换电站日负荷预测 被引量:31
19
作者 刘文霞 徐晓波 周樨 《电力自动化设备》 EI CSCD 北大核心 2014年第11期41-47,共7页
讨论了基于相似日选取的支持向量机电动汽车日负荷预测方法。通过对北京现有纯电动公交车充/换电站充电负荷的大量调研,分析了公交车充电站充电负荷的数据特征,采用关联分析方法提取了影响电动公交站充电负荷的因素,基于相关因素应用灰... 讨论了基于相似日选取的支持向量机电动汽车日负荷预测方法。通过对北京现有纯电动公交车充/换电站充电负荷的大量调研,分析了公交车充电站充电负荷的数据特征,采用关联分析方法提取了影响电动公交站充电负荷的因素,基于相关因素应用灰色关联理论构建相似日的小样本集合,而后建立多输入单输出的支持向量机预测模型。针对支持向量机预测模型,提出了两阶段确定模型参数的方法,首先直接确定不敏感损失参数ε,再通过遗传算法寻找最优核参数p和正则化参数C,以提高参数ε选取范围设置较大时的预测精度。实例测试结果表明,日负荷预测的均方根误差为10.85%,能基本满足有序控制的要求;与其他预测方法相比,改进方法具有较高的预测精度和稳定性。 展开更多
关键词 电动汽车 负荷预测 支持向量机 参数选择 充电 关联理论 相似日
在线阅读 下载PDF
基于优化算法的核函数参数选择的研究 被引量:15
20
作者 武优西 郭磊 +1 位作者 柴欣 王岩 《计算机应用与软件》 CSCD 2010年第1期137-140,共4页
尽管支持向量机在许多问题上有着良好的表现,但是其参数和核函数的参数选取问题依然亟待解决。以往多采用优化算法进行参数选取,但也需要预先经验地获得核函数的参数的选取范围。在介绍结构风险最小化原则及支持向量机算法的基础上,给... 尽管支持向量机在许多问题上有着良好的表现,但是其参数和核函数的参数选取问题依然亟待解决。以往多采用优化算法进行参数选取,但也需要预先经验地获得核函数的参数的选取范围。在介绍结构风险最小化原则及支持向量机算法的基础上,给出了基于优化算法的支持向量机参数选取的一般性算法。由于径向基核函数(RBF)的参数取值大小的不同,可导致其性质和作用不同,为此提出了一种分段函数对RBF的参数进行选择的方法,该方法使得RBF的参数取大值和小值的概率均等。由此可不必预先经验地指定RBF的参数的选取范围,依然可以优化获得最优的参数。通过对头部组织电导率估算问题进行对比研究,取得了良好的效果,验证了该方法的有效性。 展开更多
关键词 支持向量机 核函数 参数选择 优化算法 分段函数
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部