期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ODA-IPNMF:一种在线全网络流量异常检测方法 被引量:4
1
作者 柏骏 夏靖波 +1 位作者 吴吉祥 鹿传国 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2015年第5期104-109,共6页
为实时、高效地检测网络流量异常,提出一种基于增量投影非负矩阵分解(IPNMF)的全网络流量异常检测方法(ODA-IPNMF).提出一种增量投影非负矩阵算法,该算法不仅具有与PCA相同的表达形式,还能以增量的方式构建正常子空间和异常子空间,进而... 为实时、高效地检测网络流量异常,提出一种基于增量投影非负矩阵分解(IPNMF)的全网络流量异常检测方法(ODA-IPNMF).提出一种增量投影非负矩阵算法,该算法不仅具有与PCA相同的表达形式,还能以增量的方式构建正常子空间和异常子空间,进而利用Shewhart控制图实现全网络流量异常的在线检测.理论分析表明,该方法计算开销远小于NMF-NAD,具有更高的实用价值;模拟网络数据以及实测网络数据实验表明,基于NMF异常检测方法(NMF-NAD和ODAIPNMF)的检测性能优于PCA方法;本文所提ODA-IPNMF与NMF-NAD网络异常检测效果相当,且可在线检测网络异常. 展开更多
关键词 网络异常检测 流量矩阵 增量投影非负矩阵分解 在线检测
在线阅读 下载PDF
在线增量正交投影非负矩阵分解的目标跟踪算法 被引量:4
2
作者 王海军 葛红娟 张圣燕 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第6期698-705,共8页
为了避免传统的跟踪算法对视频中遮挡、尺度变化、光照变化等现象的跟踪性能下降,提出一种基于L1范数约束和在线增量正交投影非负矩阵分解的目标跟踪算法.首先将L1范数引入IOPNMF子空间重构,使得学习到的新的基于部分的目标表示能够容... 为了避免传统的跟踪算法对视频中遮挡、尺度变化、光照变化等现象的跟踪性能下降,提出一种基于L1范数约束和在线增量正交投影非负矩阵分解的目标跟踪算法.首先将L1范数引入IOPNMF子空间重构,使得学习到的新的基于部分的目标表示能够容忍不同的噪声干扰;同时,对正交投影系数进行L1范数约束,并采用循环操作求解IOPNMF子空间向量,保证算法能够处理动态的视频流以获得鲁棒的目标跟踪;最后,将跟踪目标表示为IOPNMF基向量的线性组合,并在观测模型中引入部分遮挡因素,有选择地对IOPNMF子空间进行更新.采用MATLAB实现本算法,并在8种具有遮挡、光照变化、尺度变化、运动模糊、背景杂乱等影响跟踪性能因素的视频上与其他6种算法进行对比试验.试验结果表明,新算法具有最低的平均中心点误差4.3像素,最高的平均覆盖率0.84,能够实现鲁棒稳定的跟踪. 展开更多
关键词 目标跟踪 增量正交投影 非负矩阵分解 观测模型 基于部分的表示
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部