In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of ind...In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process.展开更多
The scheme for tracking maneuvering target based on neural fuzzy network with incremental neural learning is proposed. When tracked target maneuver occurs, the scheme can detect maneuver immediately and estimate the m...The scheme for tracking maneuvering target based on neural fuzzy network with incremental neural learning is proposed. When tracked target maneuver occurs, the scheme can detect maneuver immediately and estimate the maneuver value accurately , then the tracking filter can be compensated correctly and duly by the estimated maneuver value. When environment changes, neural fuzzy network with incremental neural learning (INL-SONFIN) can find its optimal structure and parameters automatically to adopt to changed environment. So, it always produce estimated output very close to the true maneuver value that leads to good tracking performance and avoids misstracking. Simulation results show that the performance is superior to the traditional schemes and the scheme can fit changed dynamic environment to track maneuvering target accurately and duly.展开更多
基金Project(50734007) supported by the National Natural Science Foundation of China
文摘In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process.
基金This project was supported by Spaceflight Support Fund ( HIT01) and the Spaceflight Science Project Group
文摘The scheme for tracking maneuvering target based on neural fuzzy network with incremental neural learning is proposed. When tracked target maneuver occurs, the scheme can detect maneuver immediately and estimate the maneuver value accurately , then the tracking filter can be compensated correctly and duly by the estimated maneuver value. When environment changes, neural fuzzy network with incremental neural learning (INL-SONFIN) can find its optimal structure and parameters automatically to adopt to changed environment. So, it always produce estimated output very close to the true maneuver value that leads to good tracking performance and avoids misstracking. Simulation results show that the performance is superior to the traditional schemes and the scheme can fit changed dynamic environment to track maneuvering target accurately and duly.
文摘为提高双点渐进成形(double-side incremental sheet forming,DSIF)制件的成形精度,以方锥盒制件作为试验制件,以刀具直径、层间距、成形角、板厚和成形深度等工艺参数为影响因素,以底部回弹值和侧壁鼓凸最小值作为优化目标设计正交试验,利用Abaqus数值仿真计算出试验结果数据,通过建立多输入和多输出的BP(back propagation)神经网络预测模型,结合带精英策略的非支配排序遗传算法(non-dominated sorting genetic algorithm,NAGA-Ⅱ)求解双点渐进成形工艺参数多目标优化问题,基于熵权逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)从Pareto解集中决策出一组最优工艺参数组合以提高优化结果的精确度,通过优化和筛选得到的最佳工艺参数组合进行对应试验。结果表明,经实测得到制件的底部回弹值为0.693 mm,侧壁鼓凸值为0.934 mm,筛选出的目标值误差分别为6.31%和2.09%。由此可见,建立的多目标优化流程具有可行性,为双点渐进成形制件的回弹减少提供了有效的优化方案。