针对传统的最大功率点追踪(Maximum Power Point Tracking,MPPT)算法陷入局部极值不能找到最大功率点(Maximum Power Point,MPP)以及传统的蝴蝶优化算法(Butterfly Optimization Algorithm,BOA)存在收敛速度慢和搜索震荡较大等问题,提...针对传统的最大功率点追踪(Maximum Power Point Tracking,MPPT)算法陷入局部极值不能找到最大功率点(Maximum Power Point,MPP)以及传统的蝴蝶优化算法(Butterfly Optimization Algorithm,BOA)存在收敛速度慢和搜索震荡较大等问题,提出一种改进的蝴蝶优化算法(Improved Butterfly Optimization Algorithm,IBOA)结合电导增量法(Conductance Increment Method,INC)的复合MPPT追踪方法。在IBOA中,引入自适应动态转换概率来平衡算法的全局与局部搜索,然后在全局搜索阶段引入Levy飞行策略,使蝴蝶个体广泛分布于搜索空间中,提高全局寻优能力;同时在局部搜索中设置新的寻优对象,并通过贪婪算法进行筛选保留,提高局部搜索的能力。当系统位于MPP附近时,利用INC局部搜索能力强的优点快速、准确地收敛到MPP并且稳定功率的输出。仿真结果表明,在静态和动态阴影下与BOA、PSO算法进行对比,所提算法具有更快的追踪速度、更高的追踪效率和更强的鲁棒性。展开更多
文摘为提高双点渐进成形(double-side incremental sheet forming,DSIF)制件的成形精度,以方锥盒制件作为试验制件,以刀具直径、层间距、成形角、板厚和成形深度等工艺参数为影响因素,以底部回弹值和侧壁鼓凸最小值作为优化目标设计正交试验,利用Abaqus数值仿真计算出试验结果数据,通过建立多输入和多输出的BP(back propagation)神经网络预测模型,结合带精英策略的非支配排序遗传算法(non-dominated sorting genetic algorithm,NAGA-Ⅱ)求解双点渐进成形工艺参数多目标优化问题,基于熵权逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)从Pareto解集中决策出一组最优工艺参数组合以提高优化结果的精确度,通过优化和筛选得到的最佳工艺参数组合进行对应试验。结果表明,经实测得到制件的底部回弹值为0.693 mm,侧壁鼓凸值为0.934 mm,筛选出的目标值误差分别为6.31%和2.09%。由此可见,建立的多目标优化流程具有可行性,为双点渐进成形制件的回弹减少提供了有效的优化方案。
文摘针对传统的最大功率点追踪(Maximum Power Point Tracking,MPPT)算法陷入局部极值不能找到最大功率点(Maximum Power Point,MPP)以及传统的蝴蝶优化算法(Butterfly Optimization Algorithm,BOA)存在收敛速度慢和搜索震荡较大等问题,提出一种改进的蝴蝶优化算法(Improved Butterfly Optimization Algorithm,IBOA)结合电导增量法(Conductance Increment Method,INC)的复合MPPT追踪方法。在IBOA中,引入自适应动态转换概率来平衡算法的全局与局部搜索,然后在全局搜索阶段引入Levy飞行策略,使蝴蝶个体广泛分布于搜索空间中,提高全局寻优能力;同时在局部搜索中设置新的寻优对象,并通过贪婪算法进行筛选保留,提高局部搜索的能力。当系统位于MPP附近时,利用INC局部搜索能力强的优点快速、准确地收敛到MPP并且稳定功率的输出。仿真结果表明,在静态和动态阴影下与BOA、PSO算法进行对比,所提算法具有更快的追踪速度、更高的追踪效率和更强的鲁棒性。