Reflected wave seismology has the following defects:the acquisition design is based on the assumption of layered media,the signal processing suppresses weak signals such as diffracted wave and scattered wave,and the s...Reflected wave seismology has the following defects:the acquisition design is based on the assumption of layered media,the signal processing suppresses weak signals such as diffracted wave and scattered wave,and the seismic wave band after the image processing is narrow.They limit the full utilization of broadband raw data.The concept of full wave seismic exploration is redefined based on the idea of balanced utilization of reflected wave,diffracted wave and scattered wave information,its characteristics and adaptive conditions are clarified.A set of key technologies suitable for full wave seismic exploration are put forward.During seismic acquisition period,it is necessary to adopt multi geometry,i.e.embed small bin,small offset and small channel interval data in conventional geometry.By discretizing of common midpoint(CMP)gathers,small offset with high coverage,the weak signals such as diffracted wave and scattered wave in the raw seismic data can be enhanced.During seismic processing,the signal and noise in the original seismic data need to be redefined at first.The effective signals of seismic data are enhanced through merging of multi-geometry data.By means of differential application of data with different bin sizes and different arrangement modes,different regimes of seismic waves can be effectively decomposed and imaged separately.During seismic interpretation stage,making the most of the full wave seismic data,and adopting well-seismic calibration on multi-scale and multi-dimension,the seismic attributes in multi-regimes and multi-domains are interpreted to reveal interior information of complex lithology bodies and improve the lateral resolution of non-layered reservoirs.展开更多
The propagation laws of in-seam seismic wave in coal seam in differeut situations are studied by means of in-seam seismic simulatiou tests. Some valuable conclusions are obtained, which are signiricant in guiding in-s...The propagation laws of in-seam seismic wave in coal seam in differeut situations are studied by means of in-seam seismic simulatiou tests. Some valuable conclusions are obtained, which are signiricant in guiding in-seam seismic prospecting in the future.展开更多
An embedded underground coal seam carries channel waves of low seismic velocity along a stratigraphic rock-coal-rock sequence.In a homogeneous and isotropic seam, seismic waves propagate as trapped waves within the se...An embedded underground coal seam carries channel waves of low seismic velocity along a stratigraphic rock-coal-rock sequence.In a homogeneous and isotropic seam, seismic waves propagate as trapped waves within the seam, which leads to propagation of channel waves.We describe how to set up a field test for transmission in order to acquire channel waves in a coal seam.Because channel wave signals are non-stationary in their frequencies and amplitudes, a necessary velocity spectrum and wavelet transformation analysis are applied to interpret the characteristics of channel waves.The advantage of using a wavelet transformation is that different resolutions can be obtained at different times and different frequencies.According to analysis of the seismic signals acquired in the S7 sensor hole, it was clearly shown that the characteristics of channel waves are lower frequencies and attenuation which can guide an effective wave for detecting voids, boundaries and faults in coal seams with strong roofs and floors.展开更多
The presence of seam gas in the form of methane or carbon dioxide presents a hazard to underground coal mining operations.In-seam drilling has been undertaken for the past three decades for gas drainage to reduce the ...The presence of seam gas in the form of methane or carbon dioxide presents a hazard to underground coal mining operations.In-seam drilling has been undertaken for the past three decades for gas drainage to reduce the risk of gas outburst and lower the concentrations of seam gas in the underground ventilation.The drilling practices have reflected the standards of the times and have evolved with the development of technology and equipment and the needs to provide a safe mining environment underground.Early practice was to adapt equipment from other felds,with rotary drilling being the only form of drilling available.This form of drainage allowed various levels of gas drainage coverage but with changing emphasis,research and development within the coal industry has created specifc equipment,technology and practices to accurately place in-seam boreholes to provide effcient and effective gas drainage.Research into gas content determination established a standard for the process and safe levels for mining operations to continue.Surveying technology improved from the wire-line,single-shot Eastman survey instruments which was time-dependent on borehole depth to electronic instruments located in the drill string which transmitted accurate survey data to the drilling crew without time delays.This allowed improved directional control and increased drilling rates.Directional drilling technology has now been established as the industry standard to provide effective gas drainage drilling.Exploration was identifed as an additional beneft with directional drilling as it has the ability to provide exploration data from long boreholes.The ability of the technology to provide safe and reliable means to investigate the need for inrush protection and water drainage ahead of mining has been established.Directional drilling technology has now been introduced to the Chinese coal industry for gas drainage through a practice of auditing,design,supply,training and ongoing support.Experienced drilling crews can offer site specifc gas drainage drilling services utilising the latest equipment and technology.展开更多
基金Supported by the Sinopec Ministry of Science and Technology Project(P21038-3)。
文摘Reflected wave seismology has the following defects:the acquisition design is based on the assumption of layered media,the signal processing suppresses weak signals such as diffracted wave and scattered wave,and the seismic wave band after the image processing is narrow.They limit the full utilization of broadband raw data.The concept of full wave seismic exploration is redefined based on the idea of balanced utilization of reflected wave,diffracted wave and scattered wave information,its characteristics and adaptive conditions are clarified.A set of key technologies suitable for full wave seismic exploration are put forward.During seismic acquisition period,it is necessary to adopt multi geometry,i.e.embed small bin,small offset and small channel interval data in conventional geometry.By discretizing of common midpoint(CMP)gathers,small offset with high coverage,the weak signals such as diffracted wave and scattered wave in the raw seismic data can be enhanced.During seismic processing,the signal and noise in the original seismic data need to be redefined at first.The effective signals of seismic data are enhanced through merging of multi-geometry data.By means of differential application of data with different bin sizes and different arrangement modes,different regimes of seismic waves can be effectively decomposed and imaged separately.During seismic interpretation stage,making the most of the full wave seismic data,and adopting well-seismic calibration on multi-scale and multi-dimension,the seismic attributes in multi-regimes and multi-domains are interpreted to reveal interior information of complex lithology bodies and improve the lateral resolution of non-layered reservoirs.
文摘The propagation laws of in-seam seismic wave in coal seam in differeut situations are studied by means of in-seam seismic simulatiou tests. Some valuable conclusions are obtained, which are signiricant in guiding in-seam seismic prospecting in the future.
基金Project B2532532 supported by the U.S. Mine Safety and Health Administration
文摘An embedded underground coal seam carries channel waves of low seismic velocity along a stratigraphic rock-coal-rock sequence.In a homogeneous and isotropic seam, seismic waves propagate as trapped waves within the seam, which leads to propagation of channel waves.We describe how to set up a field test for transmission in order to acquire channel waves in a coal seam.Because channel wave signals are non-stationary in their frequencies and amplitudes, a necessary velocity spectrum and wavelet transformation analysis are applied to interpret the characteristics of channel waves.The advantage of using a wavelet transformation is that different resolutions can be obtained at different times and different frequencies.According to analysis of the seismic signals acquired in the S7 sensor hole, it was clearly shown that the characteristics of channel waves are lower frequencies and attenuation which can guide an effective wave for detecting voids, boundaries and faults in coal seams with strong roofs and floors.
文摘The presence of seam gas in the form of methane or carbon dioxide presents a hazard to underground coal mining operations.In-seam drilling has been undertaken for the past three decades for gas drainage to reduce the risk of gas outburst and lower the concentrations of seam gas in the underground ventilation.The drilling practices have reflected the standards of the times and have evolved with the development of technology and equipment and the needs to provide a safe mining environment underground.Early practice was to adapt equipment from other felds,with rotary drilling being the only form of drilling available.This form of drainage allowed various levels of gas drainage coverage but with changing emphasis,research and development within the coal industry has created specifc equipment,technology and practices to accurately place in-seam boreholes to provide effcient and effective gas drainage.Research into gas content determination established a standard for the process and safe levels for mining operations to continue.Surveying technology improved from the wire-line,single-shot Eastman survey instruments which was time-dependent on borehole depth to electronic instruments located in the drill string which transmitted accurate survey data to the drilling crew without time delays.This allowed improved directional control and increased drilling rates.Directional drilling technology has now been established as the industry standard to provide effective gas drainage drilling.Exploration was identifed as an additional beneft with directional drilling as it has the ability to provide exploration data from long boreholes.The ability of the technology to provide safe and reliable means to investigate the need for inrush protection and water drainage ahead of mining has been established.Directional drilling technology has now been introduced to the Chinese coal industry for gas drainage through a practice of auditing,design,supply,training and ongoing support.Experienced drilling crews can offer site specifc gas drainage drilling services utilising the latest equipment and technology.