In scenarios of real-time data collection of long-term deployed Wireless Sensor Networks (WSNs), low-latency data collection with long net- work lifetime becomes a key issue. In this paper, we present a data aggrega...In scenarios of real-time data collection of long-term deployed Wireless Sensor Networks (WSNs), low-latency data collection with long net- work lifetime becomes a key issue. In this paper, we present a data aggregation scheduling with guaran- teed lifetime and efficient latency in WSNs. We first Construct a Guaranteed Lifetime Mininmm Ra- dius Data Aggregation Tree (GLMRDAT) which is conducive to reduce scheduling latency while pro- viding a guaranteed network lifetime, and then de-sign a Greedy Scheduling algorithM (GSM) based on finding the nmzximum independent set in conflict graph to schedule he transmission of nodes in the aggregation tree. Finally, simulations show that our proposed approach not only outperfonm the state-of-the-art solutions in terms of schedule latency, but also provides longer and guaranteed network lifetilre.展开更多
Wireless sensor networks(WSNs)consist of a great deal of sensor nodes with limited power,computation,storage,sensing and communication capabilities.Data aggregation is a very important technique,which is designed to s...Wireless sensor networks(WSNs)consist of a great deal of sensor nodes with limited power,computation,storage,sensing and communication capabilities.Data aggregation is a very important technique,which is designed to substantially reduce the communication overhead and energy expenditure of sensor node during the process of data collection in a WSNs.However,privacy-preservation is more challenging especially in data aggregation,where the aggregators need to perform some aggregation operations on sensing data it received.We present a state-of-the art survey of privacy-preserving data aggregation in WSNs.At first,we classify the existing privacy-preserving data aggregation schemes into different categories by the core privacy-preserving techniques used in each scheme.And then compare and contrast different algorithms on the basis of performance measures such as the privacy protection ability,communication consumption,power consumption and data accuracy etc.Furthermore,based on the existing work,we also discuss a number of open issues which may intrigue the interest of researchers for future work.展开更多
The Internet of Things(IoT)has profoundly impacted our lives and has greatly revolutionized our lifestyle.The terminal devices in an IoT data aggregation application sense real-time data for the remote cloud server to...The Internet of Things(IoT)has profoundly impacted our lives and has greatly revolutionized our lifestyle.The terminal devices in an IoT data aggregation application sense real-time data for the remote cloud server to achieve intelligent decisions.However,the high frequency of collecting user data will raise people concerns about personal privacy.In recent years,many privacy-preserving data aggregation schemes have been proposed.Unfortunately,most existing schemes cannot support either arbitrary aggregation functions,or dynamic user group management,or fault tolerance.In this paper,we propose an efficient and privacy-preserving data aggregation scheme.In the scheme,we design a lightweight encryption method to protect the user privacy by using a ring topology and a random location sequence.On this basis,the proposed scheme supports not only arbitrary aggregation functions,but also flexible dynamic user management.Furthermore,the scheme achieves faulttolerant capabilities by utilizing a future data buffering mechanism.Security analysis reveals that the scheme can achieve the desired security properties,and experimental evaluation results show the scheme's efficiency in terms of computational and communication overhead.展开更多
Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime,...Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime, so as to prolong the lifetime of the whole WSN. In this paper, we propose a path-based data aggregation scheme (PBDAS) for grid-based wireless sensor networks. In order to extend the lifetime of a WSN, we construct a grid infrastructure by partitioning the whole sensor field into a grid of cells. Each cell has a head responsible for aggregating its own data with the data sensed by the others in the same cell and then transmitting out. In order to efficiently and rapidly transmit the data to the base station (BS), we link each cell head to form a chain. Each cell head on the chain takes turn becoming the chain leader responsible for transmitting data to the BS. Aggregated data moves from head to head along the chain, and finally the chain leader transmits to the BS. In PBDAS, only the cell heads need to transmit data toward the BS. Therefore, the data transmissions to the BS substantially decrease. Besides, the cell heads and chain leader are designated in turn according to the energy level so that the energy depletion of nodes is evenly distributed. Simulation results show that the proposed PBDAS extends the lifetime of sensor nodes, so as to make the lifetime of the whole network longer.展开更多
In order to avoid internal attacks during data aggregation in wireless sensor networks, a grid-based network architecture fit for monitoring is designed and the algorithms for network division, initialization and grid...In order to avoid internal attacks during data aggregation in wireless sensor networks, a grid-based network architecture fit for monitoring is designed and the algorithms for network division, initialization and grid tree construction are presented. The characteristics of on-off attacks are first studied and monitoring mechanisms are then designed for sensor nodes. A Fast Detection and Slow Recovery (FDSR) algorithm is proposed to prevent on-off attacks by observing the behaviors of the nodes and computing reputations. A recovery mechanism is designed to isolate malicious nodes by identifying the new roles of nodes and updating the grid tree. In the experiments, some situations of on-off attacks are simulated and the results are compared with other approaches. The experimental results indicate that our approach can detect malicious nodes effectively and guarantee secure data aggregation with acceptable energy consumption.展开更多
This paper describes an empirical study aiming at identifying the main differences between different logistic regression models and collision data aggregation methods that are commonly applied in road safety literatur...This paper describes an empirical study aiming at identifying the main differences between different logistic regression models and collision data aggregation methods that are commonly applied in road safety literature for modeling collision severity. In particular, the research compares three popular multilevel logistic models (i.e., sequential binary logit models, ordered logit models, and multinomial logit models) as well as three data aggregation methods (i.e., occupant based, vehicle based, and collision based). Six years of collision data (2001-2006) from 31 highway routes from across the province of Ontario, Canada were used for this analysis. It was found that a multilevel multinomial logit model has the best fit to the data than the other two models while the results obtained from occupant-based data are more reliable than those from vehicle- and collision-based data. More importantly, while generally consistent in terms of factors that were found to be significant between different models and data aggregation methods, the effect size of each factor differ sub- stantially, which could have significant implications forevaluating the effects of different safety-related policies and countermeasures.展开更多
The high-density population leads to crowded cities. The future city is envisaged to encompass a large-scale network with diverse applications and a massive number of interconnected heterogeneous wireless-enabled devi...The high-density population leads to crowded cities. The future city is envisaged to encompass a large-scale network with diverse applications and a massive number of interconnected heterogeneous wireless-enabled devices. Hence, green technology elements are crucial to design sustainable and future-proof network architectures. They are the solutions for spectrum scarcity, high latency, interference, energy efficiency, and scalability that occur in dense and heterogeneous wireless networks especially in the home area network (HAN). Radio-over-fiber (ROF) is a technology candidate to provide a global view of HAN's activities that can be leveraged to allocate orthogonal channel communications for enabling wireless-enabled HAN devices transmission, with considering the clustered-frequency-reuse approach. Our proposed network architecture design is mainly focused on enhancing the network throughput and reducing the average network communications latency by proposing a data aggregation unit (DAU). The performance shows that with the DAU, the average network communications latency reduces significantly while the network throughput is enhanced, compared with the existing ROF architecture without the DAU.展开更多
This paper investigates the Web data aggregation issues in multidimensional on-line analytical processing (MOLAP) and presents a rule-driven aggregation approach. The core of the approach is defining aggregate rules...This paper investigates the Web data aggregation issues in multidimensional on-line analytical processing (MOLAP) and presents a rule-driven aggregation approach. The core of the approach is defining aggregate rules. To define the rules for reading warehouse data and computing aggregates, a rule definition language - array aggregation language (AAL) is developed. This language treats an array as a function from indexes to values and provides syntax and semantics based on monads. External functions can be called in aggregation rules to specify array reading, writing, and aggregating. Based on the features of AAL, array operations are unified as function operations, which can be easily expressed and automatically evaluated. To implement the aggregation approach, a processor for computing aggregates over the base cube and for materializing them in the data warehouse is built, and the component structure and working principle of the aggregation processor are introduced.展开更多
As an emergent-architecture, mobile edge computing shifts cloud service to the edge of networks. It can satisfy several desirable characteristics for Io T systems. To reduce communication pressure from Io T devices, d...As an emergent-architecture, mobile edge computing shifts cloud service to the edge of networks. It can satisfy several desirable characteristics for Io T systems. To reduce communication pressure from Io T devices, data aggregation is a good candidate. However, data processing in MEC may suffer from many challenges, such as unverifiability of aggregated data, privacy-violation and fault-tolerance. To address these challenges, we propose PVF-DA: privacy-preserving, verifiable and fault-tolerant data aggregation in MEC based on aggregator-oblivious encryption and zero-knowledge-proof. The proposed scheme can not only provide privacy protection of the reported data, but also resist the collusion between MEC server and corrupted Io T devices. Furthermore, the proposed scheme has two outstanding features: verifiability and strong fault-tolerance. Verifiability can make Io T device to verify whether the reported sensing data is correctly aggregated. Strong fault-tolerance makes the aggregator to compute an aggregate even if one or several Io Ts fail to report their data. Finally, the detailed security proofs are shown that the proposed scheme can achieve security and privacy-preservation properties in MEC.展开更多
As a promising edge learning framework in future 6G networks,federated learning(FL)faces a number of technical challenges due to the heterogeneous network environment and diversified user behaviors.Data imbalance is o...As a promising edge learning framework in future 6G networks,federated learning(FL)faces a number of technical challenges due to the heterogeneous network environment and diversified user behaviors.Data imbalance is one of these challenges that can significantly degrade the learning efficiency.To deal with data imbalance issue,this work proposes a new learning framework,called clustered federated learning with weighted model aggregation(weighted CFL).Compared with traditional FL,our weighted CFL adaptively clusters the participating edge devices based on the cosine similarity of their local gradients at each training iteration,and then performs weighted per-cluster model aggregation.Therein,the similarity threshold for clustering is adaptive over iterations in response to the time-varying divergence of local gradients.Moreover,the weights for per-cluster model aggregation are adjusted according to the data balance feature so as to speed up the convergence rate.Experimental results show that the proposed weighted CFL achieves a faster model convergence rate and greater learning accuracy than benchmark methods under the imbalanced data scenario.展开更多
Edge computing is a highly virtualized paradigm that can services the Internet of Things(Io T)devices more efficiently.It is a non-trivial extension of cloud computing,which can not only meet the big data processing r...Edge computing is a highly virtualized paradigm that can services the Internet of Things(Io T)devices more efficiently.It is a non-trivial extension of cloud computing,which can not only meet the big data processing requirements of cloud computing,but also collect and analyze distributed data.However,it inherits many security and privacy challenges of cloud computing,such as:authentication and access control.To address these problem,we proposed a new efficient privacy-preserving aggregation scheme for edge computing.Our scheme consists of two steps.First,we divided the data of the end users with the Simulated Annealing Module Partition(SAMP)algorithm.And then,the end sensors and edge nodes performed respectively differential aggregation mechanism with the Differential Aggregation Encryption(DAE)algorithm which can make noise interference and encryption algorithm with trusted authority(TA).Experiment results show that the DAE can preserve user privacy,and has significantly less computation and communication overhead than existing approaches.展开更多
The purpose of this paper is to study the theory of conservative estimating functions in nonlinear regression model with aggregated data. In this model, a quasi-score function with aggregated data is defined. When thi...The purpose of this paper is to study the theory of conservative estimating functions in nonlinear regression model with aggregated data. In this model, a quasi-score function with aggregated data is defined. When this function happens to be conservative, it is projection of the true score function onto a class of estimation functions. By constructing, the potential function for the projected score with aggregated data is obtained, which have some properties of log-likelihood function.展开更多
The rapid growth of IP traffic has contributed to wide deployment of optical devices in elastic optical network.However,the passband shape of wavelength selective switches(WSSs)that are used in reconfigurable optical ...The rapid growth of IP traffic has contributed to wide deployment of optical devices in elastic optical network.However,the passband shape of wavelength selective switches(WSSs)that are used in reconfigurable optical add-drop multiplexer(ROADM)/optical cross connect(OXC)is not ideal,causing the narrowing of spectrum.Spectral narrowing will lead to signal impairment.Therefore,guard-bands need to be inserted between adjacent paths which will cause the waste of resources.In this paper,we propose a service-based intelligent aggregation node selection and area division(ANS-AD)algorithm.For the rationality of the aggregation node selection,the ANS-AD algorithm chooses the aggregation nodes according to historical traffic information based on big data analysis.Then the ANS-AD algorithm divides the topology into areas according to the result of the aggregation node selection.Based on the ANS-AD algorithm,we propose a time-domain and spectral-domain flow aggregation(TS-FA)algorithm.For the purpose of reducing resources'waste,the TS-FA algorithm attempts to reduce the insertion of guard-bands by time-domain and spectral-domain flow aggregation.Moreover,we design a time-domain and spectral-domain flow aggregation module on software defined optical network(SDON)architecture.Finally,a simulation is designed to evaluate the performance of the proposed algorithms and the results show that our proposed algorithms can effectively reduce the resource waste.展开更多
针对当前铁路地理环境风险监测工作中风险隐患排查过于依赖人工、监测手段单一,以及隐患台账管理方式落后等问题,设计了铁路地理环境监测信息系统。基于卫星遥感影像天地图,通过风险隐患分析技术、风险隐患的临近里程点分析及风险等级...针对当前铁路地理环境风险监测工作中风险隐患排查过于依赖人工、监测手段单一,以及隐患台账管理方式落后等问题,设计了铁路地理环境监测信息系统。基于卫星遥感影像天地图,通过风险隐患分析技术、风险隐患的临近里程点分析及风险等级评定算法,从卫星遥感影像中获取铁路周边潜在的风险隐患;基于多源异构铁路时空数据汇聚融合技术,实现了无人机视频、三维全景影像和相关资产数据的汇集入库;利用地理信息系统(GIS,Geographic Information System)技术进行铁路内外部数据的图层制作、发布和数据上图。该系统已在中国铁路南宁局集团有限公司得到应用,实现以信息化手段多维度分析隐患、全方位监测环境,可为地理环境监测工作提供技术支撑。展开更多
Wireless Sensor Networks(WSNs) has become a popular research topic due to its resource constraints. Energy consumption and transmission delay is crucial requirement to be handled to enhance the popularity of WSNs. In ...Wireless Sensor Networks(WSNs) has become a popular research topic due to its resource constraints. Energy consumption and transmission delay is crucial requirement to be handled to enhance the popularity of WSNs. In order to overcome these issues, we have proposed an Efficient Packet Scheduling Technique for Data Merging in WSNs. Packet scheduling is done by using three levels of priority queue and to reduce the transmission delay. Real-time data packets are placed in high priority queue and Non real-time data packets based on local or remote data are placed on other queues. In this paper, we have used Time Division Multiple Access(TDMA) scheme to efficiently determine the priority of the packet at each level and transmit the data packets from lower level to higher level through intermediate nodes. To reduce the number of transmission, efficient data merge technique is used to merge the data packet in intermediate nodes which has same destination node. Data merge utilize the maximum packet size by appending the merged packets with received packets till the maximum packet size or maximum waiting time is reached. Real-time data packets are directly forwarded to the next node without applying data merge. The performance is evaluated under various metrics like packet delivery ratio, packet drop, energy consumption and delay based on changing the number of nodes and transmission rate. Our results show significant reduction in various performance metrics.展开更多
基金This paper was supported by the National Basic Research Pro- gram of China (973 Program) under Crant No. 2011CB302903 the National Natural Science Foundation of China under Crants No. 60873231, No.61272084+3 种基金 the Natural Science Foundation of Jiangsu Province under Ca-ant No. BK2009426 the Innovation Project for Postgraduate Cultivation of Jiangsu Province under Crants No. CXZZ11_0402, No. CX10B195Z, No. CXLX11_0415, No. CXLXll 0416 the Natural Science Research Project of Jiangsu Education Department under Grant No. 09KJD510008 the Natural Science Foundation of the Jiangsu Higher Educa-tion Institutions of China under Grant No. 11KJA520002.
文摘In scenarios of real-time data collection of long-term deployed Wireless Sensor Networks (WSNs), low-latency data collection with long net- work lifetime becomes a key issue. In this paper, we present a data aggregation scheduling with guaran- teed lifetime and efficient latency in WSNs. We first Construct a Guaranteed Lifetime Mininmm Ra- dius Data Aggregation Tree (GLMRDAT) which is conducive to reduce scheduling latency while pro- viding a guaranteed network lifetime, and then de-sign a Greedy Scheduling algorithM (GSM) based on finding the nmzximum independent set in conflict graph to schedule he transmission of nodes in the aggregation tree. Finally, simulations show that our proposed approach not only outperfonm the state-of-the-art solutions in terms of schedule latency, but also provides longer and guaranteed network lifetilre.
基金supported in part by the National Natural Science Foundation of China(No.61272084,61202004)the Natural Science Foundation of Jiangsu Province(No.BK20130096)the Project of Natural Science Research of Jiangsu University(No.14KJB520031,No.11KJA520002)
文摘Wireless sensor networks(WSNs)consist of a great deal of sensor nodes with limited power,computation,storage,sensing and communication capabilities.Data aggregation is a very important technique,which is designed to substantially reduce the communication overhead and energy expenditure of sensor node during the process of data collection in a WSNs.However,privacy-preservation is more challenging especially in data aggregation,where the aggregators need to perform some aggregation operations on sensing data it received.We present a state-of-the art survey of privacy-preserving data aggregation in WSNs.At first,we classify the existing privacy-preserving data aggregation schemes into different categories by the core privacy-preserving techniques used in each scheme.And then compare and contrast different algorithms on the basis of performance measures such as the privacy protection ability,communication consumption,power consumption and data accuracy etc.Furthermore,based on the existing work,we also discuss a number of open issues which may intrigue the interest of researchers for future work.
基金supported by the Natural Science Foundation of Fujian Province(2018J01782)the National Natural Science Foundation of China(U1905211)the Educational scientific research project of Fujian Provincial Department of Education(JAT210291)。
文摘The Internet of Things(IoT)has profoundly impacted our lives and has greatly revolutionized our lifestyle.The terminal devices in an IoT data aggregation application sense real-time data for the remote cloud server to achieve intelligent decisions.However,the high frequency of collecting user data will raise people concerns about personal privacy.In recent years,many privacy-preserving data aggregation schemes have been proposed.Unfortunately,most existing schemes cannot support either arbitrary aggregation functions,or dynamic user group management,or fault tolerance.In this paper,we propose an efficient and privacy-preserving data aggregation scheme.In the scheme,we design a lightweight encryption method to protect the user privacy by using a ring topology and a random location sequence.On this basis,the proposed scheme supports not only arbitrary aggregation functions,but also flexible dynamic user management.Furthermore,the scheme achieves faulttolerant capabilities by utilizing a future data buffering mechanism.Security analysis reveals that the scheme can achieve the desired security properties,and experimental evaluation results show the scheme's efficiency in terms of computational and communication overhead.
基金supported by the NSC under Grant No.NSC-101-2221-E-239-032 and NSC-102-2221-E-239-020
文摘Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime, so as to prolong the lifetime of the whole WSN. In this paper, we propose a path-based data aggregation scheme (PBDAS) for grid-based wireless sensor networks. In order to extend the lifetime of a WSN, we construct a grid infrastructure by partitioning the whole sensor field into a grid of cells. Each cell has a head responsible for aggregating its own data with the data sensed by the others in the same cell and then transmitting out. In order to efficiently and rapidly transmit the data to the base station (BS), we link each cell head to form a chain. Each cell head on the chain takes turn becoming the chain leader responsible for transmitting data to the BS. Aggregated data moves from head to head along the chain, and finally the chain leader transmits to the BS. In PBDAS, only the cell heads need to transmit data toward the BS. Therefore, the data transmissions to the BS substantially decrease. Besides, the cell heads and chain leader are designated in turn according to the energy level so that the energy depletion of nodes is evenly distributed. Simulation results show that the proposed PBDAS extends the lifetime of sensor nodes, so as to make the lifetime of the whole network longer.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 60873199.
文摘In order to avoid internal attacks during data aggregation in wireless sensor networks, a grid-based network architecture fit for monitoring is designed and the algorithms for network division, initialization and grid tree construction are presented. The characteristics of on-off attacks are first studied and monitoring mechanisms are then designed for sensor nodes. A Fast Detection and Slow Recovery (FDSR) algorithm is proposed to prevent on-off attacks by observing the behaviors of the nodes and computing reputations. A recovery mechanism is designed to isolate malicious nodes by identifying the new roles of nodes and updating the grid tree. In the experiments, some situations of on-off attacks are simulated and the results are compared with other approaches. The experimental results indicate that our approach can detect malicious nodes effectively and guarantee secure data aggregation with acceptable energy consumption.
基金supported by MTO in part through the Highway Infrastructure and Innovations Funding Program(HIIFP)
文摘This paper describes an empirical study aiming at identifying the main differences between different logistic regression models and collision data aggregation methods that are commonly applied in road safety literature for modeling collision severity. In particular, the research compares three popular multilevel logistic models (i.e., sequential binary logit models, ordered logit models, and multinomial logit models) as well as three data aggregation methods (i.e., occupant based, vehicle based, and collision based). Six years of collision data (2001-2006) from 31 highway routes from across the province of Ontario, Canada were used for this analysis. It was found that a multilevel multinomial logit model has the best fit to the data than the other two models while the results obtained from occupant-based data are more reliable than those from vehicle- and collision-based data. More importantly, while generally consistent in terms of factors that were found to be significant between different models and data aggregation methods, the effect size of each factor differ sub- stantially, which could have significant implications forevaluating the effects of different safety-related policies and countermeasures.
基金supported by the Ministry of Higher Education,Malaysia under Scholarship of Hadiah Latihan Persekutuan under Grant No.KPT.B.600-19/3-791206065445
文摘The high-density population leads to crowded cities. The future city is envisaged to encompass a large-scale network with diverse applications and a massive number of interconnected heterogeneous wireless-enabled devices. Hence, green technology elements are crucial to design sustainable and future-proof network architectures. They are the solutions for spectrum scarcity, high latency, interference, energy efficiency, and scalability that occur in dense and heterogeneous wireless networks especially in the home area network (HAN). Radio-over-fiber (ROF) is a technology candidate to provide a global view of HAN's activities that can be leveraged to allocate orthogonal channel communications for enabling wireless-enabled HAN devices transmission, with considering the clustered-frequency-reuse approach. Our proposed network architecture design is mainly focused on enhancing the network throughput and reducing the average network communications latency by proposing a data aggregation unit (DAU). The performance shows that with the DAU, the average network communications latency reduces significantly while the network throughput is enhanced, compared with the existing ROF architecture without the DAU.
基金The National Natural Science Foundationof China (No60573165)
文摘This paper investigates the Web data aggregation issues in multidimensional on-line analytical processing (MOLAP) and presents a rule-driven aggregation approach. The core of the approach is defining aggregate rules. To define the rules for reading warehouse data and computing aggregates, a rule definition language - array aggregation language (AAL) is developed. This language treats an array as a function from indexes to values and provides syntax and semantics based on monads. External functions can be called in aggregation rules to specify array reading, writing, and aggregating. Based on the features of AAL, array operations are unified as function operations, which can be easily expressed and automatically evaluated. To implement the aggregation approach, a processor for computing aggregates over the base cube and for materializing them in the data warehouse is built, and the component structure and working principle of the aggregation processor are introduced.
基金supported by Beijing Natural Science Foundation—Haidian Original Innovation Joint Fund Project Task Book(Key Research Topic)(Nos.L182039)Open Fund of National Engineering Laboratory for Big Data Collaborative Security Technology and the Foundation of Guizhou Provincial Key Laboratory of Public Big Data(No.2019BDKFJJ012)。
文摘As an emergent-architecture, mobile edge computing shifts cloud service to the edge of networks. It can satisfy several desirable characteristics for Io T systems. To reduce communication pressure from Io T devices, data aggregation is a good candidate. However, data processing in MEC may suffer from many challenges, such as unverifiability of aggregated data, privacy-violation and fault-tolerance. To address these challenges, we propose PVF-DA: privacy-preserving, verifiable and fault-tolerant data aggregation in MEC based on aggregator-oblivious encryption and zero-knowledge-proof. The proposed scheme can not only provide privacy protection of the reported data, but also resist the collusion between MEC server and corrupted Io T devices. Furthermore, the proposed scheme has two outstanding features: verifiability and strong fault-tolerance. Verifiability can make Io T device to verify whether the reported sensing data is correctly aggregated. Strong fault-tolerance makes the aggregator to compute an aggregate even if one or several Io Ts fail to report their data. Finally, the detailed security proofs are shown that the proposed scheme can achieve security and privacy-preservation properties in MEC.
文摘As a promising edge learning framework in future 6G networks,federated learning(FL)faces a number of technical challenges due to the heterogeneous network environment and diversified user behaviors.Data imbalance is one of these challenges that can significantly degrade the learning efficiency.To deal with data imbalance issue,this work proposes a new learning framework,called clustered federated learning with weighted model aggregation(weighted CFL).Compared with traditional FL,our weighted CFL adaptively clusters the participating edge devices based on the cosine similarity of their local gradients at each training iteration,and then performs weighted per-cluster model aggregation.Therein,the similarity threshold for clustering is adaptive over iterations in response to the time-varying divergence of local gradients.Moreover,the weights for per-cluster model aggregation are adjusted according to the data balance feature so as to speed up the convergence rate.Experimental results show that the proposed weighted CFL achieves a faster model convergence rate and greater learning accuracy than benchmark methods under the imbalanced data scenario.
基金supported by the National Natural Science Foundation of China(61672321,61771289,and 61832012)the Natural Science Foundation of Shandong Province with Grants ZR2021QF050 and ZR2021MF075+6 种基金Shandong province key research and development plan(2019GGX101050)Shandong provincial Graduate Education Innovation Program(SDYY14052 and SDYY15049)Qufu Normal University Science and Technology Project(xkj201525)Shandong province agricultural machinery equipment research and development innovation project(2018YZ002)Qufu Normal University graduate degree thesis research innovation funding project(LWCXS201935)Shandong Provincial Specialized Degree Postgraduate Teaching Case Library Construction ProgramShandong Provincial Postgraduate Education Quality Curriculum Construction Program。
文摘Edge computing is a highly virtualized paradigm that can services the Internet of Things(Io T)devices more efficiently.It is a non-trivial extension of cloud computing,which can not only meet the big data processing requirements of cloud computing,but also collect and analyze distributed data.However,it inherits many security and privacy challenges of cloud computing,such as:authentication and access control.To address these problem,we proposed a new efficient privacy-preserving aggregation scheme for edge computing.Our scheme consists of two steps.First,we divided the data of the end users with the Simulated Annealing Module Partition(SAMP)algorithm.And then,the end sensors and edge nodes performed respectively differential aggregation mechanism with the Differential Aggregation Encryption(DAE)algorithm which can make noise interference and encryption algorithm with trusted authority(TA).Experiment results show that the DAE can preserve user privacy,and has significantly less computation and communication overhead than existing approaches.
文摘The purpose of this paper is to study the theory of conservative estimating functions in nonlinear regression model with aggregated data. In this model, a quasi-score function with aggregated data is defined. When this function happens to be conservative, it is projection of the true score function onto a class of estimation functions. By constructing, the potential function for the projected score with aggregated data is obtained, which have some properties of log-likelihood function.
基金funded by ZTE Industry-Academia-Research Cooperation Funds under Grant No.2017110031005226
文摘The rapid growth of IP traffic has contributed to wide deployment of optical devices in elastic optical network.However,the passband shape of wavelength selective switches(WSSs)that are used in reconfigurable optical add-drop multiplexer(ROADM)/optical cross connect(OXC)is not ideal,causing the narrowing of spectrum.Spectral narrowing will lead to signal impairment.Therefore,guard-bands need to be inserted between adjacent paths which will cause the waste of resources.In this paper,we propose a service-based intelligent aggregation node selection and area division(ANS-AD)algorithm.For the rationality of the aggregation node selection,the ANS-AD algorithm chooses the aggregation nodes according to historical traffic information based on big data analysis.Then the ANS-AD algorithm divides the topology into areas according to the result of the aggregation node selection.Based on the ANS-AD algorithm,we propose a time-domain and spectral-domain flow aggregation(TS-FA)algorithm.For the purpose of reducing resources'waste,the TS-FA algorithm attempts to reduce the insertion of guard-bands by time-domain and spectral-domain flow aggregation.Moreover,we design a time-domain and spectral-domain flow aggregation module on software defined optical network(SDON)architecture.Finally,a simulation is designed to evaluate the performance of the proposed algorithms and the results show that our proposed algorithms can effectively reduce the resource waste.
文摘针对当前铁路地理环境风险监测工作中风险隐患排查过于依赖人工、监测手段单一,以及隐患台账管理方式落后等问题,设计了铁路地理环境监测信息系统。基于卫星遥感影像天地图,通过风险隐患分析技术、风险隐患的临近里程点分析及风险等级评定算法,从卫星遥感影像中获取铁路周边潜在的风险隐患;基于多源异构铁路时空数据汇聚融合技术,实现了无人机视频、三维全景影像和相关资产数据的汇集入库;利用地理信息系统(GIS,Geographic Information System)技术进行铁路内外部数据的图层制作、发布和数据上图。该系统已在中国铁路南宁局集团有限公司得到应用,实现以信息化手段多维度分析隐患、全方位监测环境,可为地理环境监测工作提供技术支撑。
文摘Wireless Sensor Networks(WSNs) has become a popular research topic due to its resource constraints. Energy consumption and transmission delay is crucial requirement to be handled to enhance the popularity of WSNs. In order to overcome these issues, we have proposed an Efficient Packet Scheduling Technique for Data Merging in WSNs. Packet scheduling is done by using three levels of priority queue and to reduce the transmission delay. Real-time data packets are placed in high priority queue and Non real-time data packets based on local or remote data are placed on other queues. In this paper, we have used Time Division Multiple Access(TDMA) scheme to efficiently determine the priority of the packet at each level and transmit the data packets from lower level to higher level through intermediate nodes. To reduce the number of transmission, efficient data merge technique is used to merge the data packet in intermediate nodes which has same destination node. Data merge utilize the maximum packet size by appending the merged packets with received packets till the maximum packet size or maximum waiting time is reached. Real-time data packets are directly forwarded to the next node without applying data merge. The performance is evaluated under various metrics like packet delivery ratio, packet drop, energy consumption and delay based on changing the number of nodes and transmission rate. Our results show significant reduction in various performance metrics.