This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction betwee...This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.展开更多
The ingots of Pr0.15TbxDy0.85-xFe2 (x=0.10-0.85) series compounds with a single phase were prepared -by a arc melting method. The X-ray diffraction patterns were measured using a Philips X’pert MPD X-ray diffractom...The ingots of Pr0.15TbxDy0.85-xFe2 (x=0.10-0.85) series compounds with a single phase were prepared -by a arc melting method. The X-ray diffraction patterns were measured using a Philips X’pert MPD X-ray diffractometer with a non-ambient sample stage at different temperatures, the magnetostrictive distortion in (Pr0.15TbxDy0.85-xFe2) polycrystals was investigated by X-ray diffraction patterns and the magnetostriction coefficient λ111 was calculated. The results show -when the temperature is raised above the spin reorientation temperature region, a splitting appears in the reflection (440); the λ111 increase with the increasing of Tb content for (Pr0.15TbxDy0.85-xFe2) polycrystals and the full width at half maximum (FWHM) of the reflection (440) increases gradually with the increasing of Tb content. Moreover, as the FWHM of the reflection (440) decreases gradually with the increasing of temperature, the λ111 decreases slightly with the increasing of temperature at the temperature region of 223-373K for Pr0.15Tb0.3Dy0.55Fe2 alloy.展开更多
Transformation-induced plasticity(TRIP)steel possesses high strength and formability,enabling the use of a thinner gauge material and allowing for the fabrication of complex shapes.In this research,we measured the eff...Transformation-induced plasticity(TRIP)steel possesses high strength and formability,enabling the use of a thinner gauge material and allowing for the fabrication of complex shapes.In this research,we measured the effect of bending temperatures on the microstructure and air-bending springback angle of TRIP steel at temperatures from 25 to 600C.Real-time in situ X-ray diffraction and scanning electron microscopy were used for pre-and postbending analysis.As the prebending temperature increased from 25C to 600C,the retained austenite(RA)volume fraction decreased,and the RA transformed to bainite at temperatures above 400C.The springback angle was positively correlated with the prebending RA volume fraction,with the smallest springback angle achieved at 400C.Additionally,the springback angle was positively correlated with the bending angle,because the RA transformation ratio contributed to increased strain hardening.Further microstructure analysis revealed that the RA became elongated in the tension direction as the bending temperatures increased.展开更多
基金CAS Photon Science Research Center for Carbon DioxideCAS President’s International Fellowship Initiative(2024PVA0097)+1 种基金National Key Research and Development Program of China(2017YFA0403000,2017YFA0402800)National Natural Science Foundation of China(U1932201,U1732121)。
文摘This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.
基金Project(50271023) supported by the National Natural Science Foundation of China
文摘The ingots of Pr0.15TbxDy0.85-xFe2 (x=0.10-0.85) series compounds with a single phase were prepared -by a arc melting method. The X-ray diffraction patterns were measured using a Philips X’pert MPD X-ray diffractometer with a non-ambient sample stage at different temperatures, the magnetostrictive distortion in (Pr0.15TbxDy0.85-xFe2) polycrystals was investigated by X-ray diffraction patterns and the magnetostriction coefficient λ111 was calculated. The results show -when the temperature is raised above the spin reorientation temperature region, a splitting appears in the reflection (440); the λ111 increase with the increasing of Tb content for (Pr0.15TbxDy0.85-xFe2) polycrystals and the full width at half maximum (FWHM) of the reflection (440) increases gradually with the increasing of Tb content. Moreover, as the FWHM of the reflection (440) decreases gradually with the increasing of temperature, the λ111 decreases slightly with the increasing of temperature at the temperature region of 223-373K for Pr0.15Tb0.3Dy0.55Fe2 alloy.
基金This research was funded by Faculty of Engineering,King Mongkut’s Institute of Technology Ladkrabang.
文摘Transformation-induced plasticity(TRIP)steel possesses high strength and formability,enabling the use of a thinner gauge material and allowing for the fabrication of complex shapes.In this research,we measured the effect of bending temperatures on the microstructure and air-bending springback angle of TRIP steel at temperatures from 25 to 600C.Real-time in situ X-ray diffraction and scanning electron microscopy were used for pre-and postbending analysis.As the prebending temperature increased from 25C to 600C,the retained austenite(RA)volume fraction decreased,and the RA transformed to bainite at temperatures above 400C.The springback angle was positively correlated with the prebending RA volume fraction,with the smallest springback angle achieved at 400C.Additionally,the springback angle was positively correlated with the bending angle,because the RA transformation ratio contributed to increased strain hardening.Further microstructure analysis revealed that the RA became elongated in the tension direction as the bending temperatures increased.