期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
线性回归模型精化方法
被引量:
7
1
作者
张志伟
胡伍生
黄晓明
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2009年第6期1279-1282,共4页
为了解决由试验观测数据建立的回归拟合模型存在的模型误差,用基于回归残差的神经网络方法精化模型.采用给定方程获得模拟数据,通过数据结构散点图建立回归模型趋势项,利用经典最小二乘法估计趋势项参数,由趋势项参数计算回归残差,借助...
为了解决由试验观测数据建立的回归拟合模型存在的模型误差,用基于回归残差的神经网络方法精化模型.采用给定方程获得模拟数据,通过数据结构散点图建立回归模型趋势项,利用经典最小二乘法估计趋势项参数,由趋势项参数计算回归残差,借助误差分级迭代的改进BP算法对趋势项进行精化,将两部分叠加获得精化模型.试验结果验证了基于回归残差的神经网络方法精化模型的有效性:神经网络方法精化后的模型能提高回归模型的拟合及预测精度5倍以上,优于最小二乘配置法和半参数法精化结果.神经网络方法精化模型既克服了单一神经网络模型的不可解释性,使模型具有物理意义,又具有较高的预测精度.
展开更多
关键词
模型精化
趋势项
回归残差
神经网络
在线阅读
下载PDF
职称材料
题名
线性回归模型精化方法
被引量:
7
1
作者
张志伟
胡伍生
黄晓明
机构
东南大学交通学院
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2009年第6期1279-1282,共4页
基金
国家高技术研究发展计划(863计划)资助项目(2007AA12Z228)
文摘
为了解决由试验观测数据建立的回归拟合模型存在的模型误差,用基于回归残差的神经网络方法精化模型.采用给定方程获得模拟数据,通过数据结构散点图建立回归模型趋势项,利用经典最小二乘法估计趋势项参数,由趋势项参数计算回归残差,借助误差分级迭代的改进BP算法对趋势项进行精化,将两部分叠加获得精化模型.试验结果验证了基于回归残差的神经网络方法精化模型的有效性:神经网络方法精化后的模型能提高回归模型的拟合及预测精度5倍以上,优于最小二乘配置法和半参数法精化结果.神经网络方法精化模型既克服了单一神经网络模型的不可解释性,使模型具有物理意义,又具有较高的预测精度.
关键词
模型精化
趋势项
回归残差
神经网络
Keywords
improving model tendency item regressive residual neural network
分类号
P413 [天文地球—大气科学及气象学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
线性回归模型精化方法
张志伟
胡伍生
黄晓明
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2009
7
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部