期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
参数优化的IZOA-SVM机械设备故障诊断方法
1
作者 赵月静 邢天祥 秦志英 《机电工程》 CAS 北大核心 2024年第10期1894-1902,共9页
在复杂的工作环境中,机械设备振动信号的复杂性常常会导致机械设备故障诊断的准确性不高,为解决设备运行中因信号复杂性引发的故障诊断难题,提出了一种参数优化的斑马优化算法优化支持向量机(IZOA-SVM)的故障诊断方法。首先,引入了柯西... 在复杂的工作环境中,机械设备振动信号的复杂性常常会导致机械设备故障诊断的准确性不高,为解决设备运行中因信号复杂性引发的故障诊断难题,提出了一种参数优化的斑马优化算法优化支持向量机(IZOA-SVM)的故障诊断方法。首先,引入了柯西变异和反向学习的改进策略到斑马优化算法(ZOA)中,提出了改进的斑马优化算法(IZOA),旨在改善原有斑马优化算法在迭代后期容易陷入局部极值等问题,从而有效增强了其全局搜索能力;其次,利用IZOA优化支持向量机(SVM)的核参数g和惩罚参数c以寻找SVM最优参数组合[c,g],并构建了IZOA-SVM模型;然后,计算了样本的13个时域特征以构成特征向量,并将特征向量分别输入到IZOA-SVM模型、斑马优化算法优化支持向量机(ZOA-SVM)模型、粒子群算法优化支持向量机(PSO-SVM)模型、遗传算法优化支持向量机(GA-SVM)模型和支持向量机模型,进行了故障分类;最后,通过旋转机械振动及故障模拟试验验证了该方法的有效性。研究结果表明:IZOA-SVM模型在分类准确率方面得到了明显的提高,达到了98.33%;该模型能够精准而稳定地识别故障类型,提高故障识别的准确性,在准确率方面相较于其他对比方法表现出更为显著的优势。因此,该方法在全局搜索和故障分类准确性方面都取得了明显的改进,为复杂环境下的故障诊断提供了可参考的解决方案。 展开更多
关键词 机械设备 旋转机械 故障诊断 改进斑马优化算法 柯西变异 反向学习 支持向量机
在线阅读 下载PDF
改进全局ZOA优化MVMD-SCN的锂电池SOH估算 被引量:3
2
作者 郭喜峰 黄裕海 +2 位作者 单丹 原宝龙 宁一 《电子测量技术》 北大核心 2024年第5期22-30,共9页
锂电池健康状态(SOH)的准确估算对电池系统的健康管理起着重要作用,为提高SOH的估算精度,提出一种将参数优化后的多元变分模态分解(MVMD)和随机配置网络(SCN)相结合的SOH估算方法。从锂电池充放电过程中提取多个健康因子(HF)作为SOH估... 锂电池健康状态(SOH)的准确估算对电池系统的健康管理起着重要作用,为提高SOH的估算精度,提出一种将参数优化后的多元变分模态分解(MVMD)和随机配置网络(SCN)相结合的SOH估算方法。从锂电池充放电过程中提取多个健康因子(HF)作为SOH估算模型的输入,在斑马优化算法(ZOA)全局阶段引入自适应权重和最优领域波动策略,提高其全局搜索能力,得到改进全局的斑马优化算法(IGZOA),利用它对MVMD和SCN参数进行寻优,最后在9个基准函数测试IGZOA性能,在NASA和CALCE数据集上将所提方法与不同方法进行锂电池SOH的估算对比,结果表明,所提方法的均方根误差和绝对误差的平均值分别为0.84%,0.93%,具有更高的预测精度和泛化性。 展开更多
关键词 锂电池 健康状态 多元变分模态分解 改进斑马优化算法 随机配置网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部