期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于IWOA-LSTM算法的预应力钢筋混凝土梁损伤识别 被引量:5
1
作者 范旭红 章立栋 +2 位作者 杨帆 李青 郁董凯 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期105-112,119,共9页
为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模... 为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模型,根据经验设置LSTM模型的超参数容易导致网络陷入局部最优而影响了分类结果,提出采用Sine混沌映射和自适应权重来改进鲸鱼优化算法(WOA),对LSTM进行超参数寻优.设计了IWOA-LSTM算法模型,训练识别试验梁各损伤阶段的AE信号特征参数.定型网络结构,并识别同种工况下其他梁的AE信号.结果表明:IWOA-LSTM算法模型识别准确率均超过或接近92%,相较于普通LSTM模型,IWOA-LSTM模型识别准确率提高了约7%. 展开更多
关键词 预应力钢筋混凝土梁 声发射 损伤识别 长短时记忆神经网络 改进的鲸鱼优化算法
在线阅读 下载PDF
基于1DCNN-IWOA-SVM的齿轮箱故障诊断方法研究
2
作者 贾丽臻 雷欣然 李耀华 《机械设计》 北大核心 2025年第7期98-106,共9页
齿轮箱作为航空发动机重要的传动装置,工作环境恶劣,导致振动信号呈多种信息叠加难以区分。针对齿轮箱故障特征难以提取、故障难以识别的问题,提出一种基于一维卷积神经网络结合改进鲸鱼优化支持向量机的航空发动机齿轮箱故障诊断方法,... 齿轮箱作为航空发动机重要的传动装置,工作环境恶劣,导致振动信号呈多种信息叠加难以区分。针对齿轮箱故障特征难以提取、故障难以识别的问题,提出一种基于一维卷积神经网络结合改进鲸鱼优化支持向量机的航空发动机齿轮箱故障诊断方法,实现航空发动机齿轮箱故障快速、精准诊断。使用一维卷积神经通过其内置的卷积和池化对振动信号进行故障特征提取,在鲸鱼优化算法中引入混沌映射、非线性因子和自适应权重对其进行改进;使用改进后的鲸鱼优化算法对支持向量机进行参数寻优,再将一维卷积神经网络提取的故障特征输入到经改进鲸鱼优化参数后的支持向量机中进行故障诊断。仿真结果表明:所提的故障诊断模型对齿轮箱故障具有良好的诊断效果,与其他方法相比效果更好、泛化能力更强。 展开更多
关键词 齿轮箱 故障诊断 一维卷积神经网络 改进鲸鱼优化算法 支持向量机
在线阅读 下载PDF
基于Kmeans-EMD与IWOA-Elman的碾压速度异常值检测与修正 被引量:1
3
作者 乔天诚 佟大威 +2 位作者 王佳俊 关涛 吴斌平 《水资源与水工程学报》 CSCD 北大核心 2022年第3期124-131,共8页
碾压速度是评价压实质量的重要指标,但在监控过程中,碾压速度易受施工环境、定位漂移等干扰而出现异常检测值,影响压实质量的评价精度,但目前还缺乏对碾压速度异常值检测与修正的相关方法研究。为保障碾压速度的数据质量,结合碾压速度... 碾压速度是评价压实质量的重要指标,但在监控过程中,碾压速度易受施工环境、定位漂移等干扰而出现异常检测值,影响压实质量的评价精度,但目前还缺乏对碾压速度异常值检测与修正的相关方法研究。为保障碾压速度的数据质量,结合碾压速度的时序变化特征,利用Kmeans算法初步定性检测异常值,弱化异常值对经验模态分解(EMD)结果的影响,并基于EMD实现对异常值的精细定量检测,提高异常值检测的精度;进而利用经混沌种群初始化、非线性收敛因子、自适应惯性权重与鲶鱼效应-黄金正弦改进的鲸鱼优化算法(IWOA)优化Elman神经网络,并构建碾压速度异常值修正模型,实现对碾压速度异常值的修正。将本文方法应用于西南某大型水电工程,结果表明:Kmeans算法与EMD的联合作用相比箱线图法可更高精度地检测碾压速度中的异常值;IWOA-Elman神经网络预测值与真实值的相关系数达到0.907 75,相比常规模型不仅可以更好地确保数据的完整性与可靠性,还可以为压实质量的高精度评价奠定良好的数据基础。 展开更多
关键词 碾压速度 异常值检测 Kmeans算法 经验模态分解 异常值修正 iwoa-elman神经网络
在线阅读 下载PDF
基于DBO-VMD和IWOA-BILSTM神经网络组合模型的短期电力负荷预测 被引量:24
4
作者 刘杰 从兰美 +3 位作者 夏远洋 潘广源 赵汉超 韩子月 《电力系统保护与控制》 EI CSCD 北大核心 2024年第8期123-133,共11页
新能源在现代电力系统中占比不断提高,其负荷不规律性、波动性远大于传统电力系统,这就导致负荷预测精度不高。针对这个问题,提出了蜣螂优化(dung beetle optimizer,DBO)算法优化变分模态分解(variational mode decomposition,VMD)与改... 新能源在现代电力系统中占比不断提高,其负荷不规律性、波动性远大于传统电力系统,这就导致负荷预测精度不高。针对这个问题,提出了蜣螂优化(dung beetle optimizer,DBO)算法优化变分模态分解(variational mode decomposition,VMD)与改进鲸鱼优化算法优化双向长短期记忆(improved whale optimization algorithm-bidirectional long short-term memory,IWOA-BILSTM)神经网络相结合的短期负荷预测模型。首先利用DBO优化VMD,分解时间序列数据,并根据最小包络熵对各种特征数据进行分类,增强了分解效果。通过对原始数据进行有效分解,降低了数据的波动性。然后使用非线性收敛因子、自适应权重策略与随机差分法变异策略增强鲸鱼优化算法的局部及全局搜索能力得到改进鲸鱼优化算法(improved whale optimization algorithm,IWOA),并用于优化双向长短期记忆(bidirectional long short-term memory,BILSTM)神经网络,增加了模型预测的精确度。最后将所提方法应用于某地真实的负荷数据,得到最终相对均方根误差、平均绝对误差和平均绝对百分比误差分别为0.0084、48.09、0.66%,证明了提出的模型对于短期负荷预测的有效性。 展开更多
关键词 蜣螂优化算法 VMD 改进鲸鱼算法 短期电力负荷预测 双向长短期记忆神经网络 组合算法
在线阅读 下载PDF
基于IWOA-PNN模型的管道焊缝腐蚀剩余强度预测 被引量:6
5
作者 骆正山 肖雨 王小完 《安全与环境学报》 CAS CSCD 北大核心 2023年第2期435-441,共7页
针对管道焊缝腐蚀问题构建基于改进鲸鱼优化算法(Improved Whale Optimization Algorithm, IWOA)的概率神经网络(Probabilistic Neural Network, PNN)剩余强度预测模型。首先,通过种群初始化、非线性收敛因子和惯性权重因子提高鲸鱼优... 针对管道焊缝腐蚀问题构建基于改进鲸鱼优化算法(Improved Whale Optimization Algorithm, IWOA)的概率神经网络(Probabilistic Neural Network, PNN)剩余强度预测模型。首先,通过种群初始化、非线性收敛因子和惯性权重因子提高鲸鱼优化算法的寻优速度和精度;然后,利用IWOA算法优化PNN的光滑因子,构建IWOA-PNN预测模型;最后,以水压爆破试验数据为基础,使用MATLAB软件进行仿真试验,并与另外2个模型进行对比分析。结果表明:IWOA-PNN模型的ERMS为0.633 1,EAR为2.19%,R^(2)为0.954 6,均优于PNN和鲸鱼优化算法(Whale Optimization Algorithm, WOA)-PNN模型;IWOA-PNN模型与传统模型相比误差更小,能够更为准确地预测焊缝腐蚀后剩余强度,为管道的维修和更换提供参考。 展开更多
关键词 安全工程 管道腐蚀 焊缝 剩余强度 改进鲸鱼优化算法(iwoa) 概率神经网络(PNN)
在线阅读 下载PDF
计及时空特性的变压器油中溶解气体预测模型 被引量:1
6
作者 李紫豪 何怡刚 +1 位作者 周亚中 雷蕾潇 《电子测量与仪器学报》 北大核心 2025年第3期1-12,共12页
针对电力变压器复杂运行环境下油中溶解气体随时间呈现非平稳和非线性特性,仅考虑时间维度关联特征的神经网络预测模型难以满足高准确性、高可靠性需求,且在数据采集过程中不可避免的存在异常值,导致数据质量下降,进而影响预测模型精度... 针对电力变压器复杂运行环境下油中溶解气体随时间呈现非平稳和非线性特性,仅考虑时间维度关联特征的神经网络预测模型难以满足高准确性、高可靠性需求,且在数据采集过程中不可避免的存在异常值,导致数据质量下降,进而影响预测模型精度。因此首先采用基于密度的噪声应用空间聚类(DBSCAN)对油中溶解气体数据清洗,然后提出自适应非线性权重和莱维飞行策略改进鲸鱼优化算法,提高其局部及全局寻优能力,利用改进的鲸鱼优化算法优化DBSCAN中超参数提高数据清洗效果,最后分析气体成分间复杂关联关系,构建时空耦合卷积神经网络模型挖掘气体的时空特征,实现油中溶解气体时间序列预测。通过某电站变压器油中溶解气体实测数据验证,结果表明数据清洗后预测拟合优度(R^(2))提高0.727,在6种特征气体预测中R2都在0.9以上。相较于其他模型,所提模型在特征气体预测中均取得了最佳的预测结果,充分证明所提模型的有效性。 展开更多
关键词 改进的鲸鱼优化算法 数据清洗 时空耦合卷积神经网络 油中溶解气体预测
在线阅读 下载PDF
基于WOA-IGWO-LSTM的作业车间实时调度
7
作者 郑华丽 魏光艳 +2 位作者 孙东 王明君 叶春明 《机床与液压》 北大核心 2025年第2期54-63,共10页
针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特... 针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特征进行降维,以提高模型泛化能力和准确性。引入非线性收敛因子设计一种改进灰狼算法(IGWO)用于调节LSTM参数,提高算法实用性。最后,通过对比试验验证了WOA、IGWO以及WOA-IGWO-LSTM的有效性,并利用工业案例数据验证了WOA-IGWO-LSTM对于解决作业车间实时调度问题的有效性和可行性。 展开更多
关键词 长短期记忆(LSTM)神经网络 鲸鱼优化算法(WOA) 改进灰狼算法 作业车间实时调度
在线阅读 下载PDF
微带天线设计及在局部放电检测中的应用 被引量:1
8
作者 黄云志 王蕾 韩亮 《电子测量与仪器学报》 CSCD 北大核心 2024年第8期95-102,共8页
电气设备的局部放电既是绝缘劣化的主要因素,又是有效表征绝缘缺陷的重要参量。对局部放电进行准确检测,可以及时发现危及设备安全的潜在故障。特高频检测具有实时性好、抗干扰强的优势,在放电检测中应用广泛,但现有微带天线传感器受结... 电气设备的局部放电既是绝缘劣化的主要因素,又是有效表征绝缘缺陷的重要参量。对局部放电进行准确检测,可以及时发现危及设备安全的潜在故障。特高频检测具有实时性好、抗干扰强的优势,在放电检测中应用广泛,但现有微带天线传感器受结构尺寸限制,工作带宽难以提高。本文采用部分接地板技术结合斜切式曲流技术改善结构,综合考虑天线尺寸与工作带宽的非线性关系优化尺寸,在保持天线面积不变的前提下扩展工作带宽,并以聚酰亚胺为基底研制了新型微带天线传感器。针对尺寸优化过程中存在的单尺寸参数调整导致天线性能不稳定的问题,提出利用径向基(RBF)神经网络建立多尺寸与工作带宽之间的关系模型,运用改进白鲸优化(IBWO)算法优化天线尺寸。仿真结果表明新型柔性微带天线尺寸缩小了59.59%;工作带宽由0.598~0.6 GHz增加到0.3~3 GHz,完全满足局部放电检测的应用需求。通过模拟局部放电检测试验,并与阿基米德螺旋天线、立体螺旋天线进行比较测试,结果显示新型柔性微带天线具有更高效的检测性能。 展开更多
关键词 局部放电检测 新型柔性微带天线 斜切式曲流技术 径向基神经网络 改进白鲸优化算法
在线阅读 下载PDF
基于数字孪生技术的往复式空气压缩机效率预测方法研究
9
作者 余建平 胡爽 +3 位作者 刘兴旺 田有文 仇宏伟 AKOTO Emmanuel 《兰州理工大学学报》 CAS 北大核心 2024年第1期48-52,共5页
通过建立往复式空气压缩机数字孪生体模型,实现压缩机效率预测和参数寻优的方法,具有灵活、成本低、通用性好的优势.但是在多变量条件下,传统的基于BP神经网络孪生模型训练时间长、工作量大,寻优过程易陷入局部最优解,不易实现全局最优... 通过建立往复式空气压缩机数字孪生体模型,实现压缩机效率预测和参数寻优的方法,具有灵活、成本低、通用性好的优势.但是在多变量条件下,传统的基于BP神经网络孪生模型训练时间长、工作量大,寻优过程易陷入局部最优解,不易实现全局最优.针对传统孪生体模型存在的问题,提出了基于CIWOA-BPNN算法的孪生体模型构建方法,通过主成分分析法确定孪生体模型关键指标,在BPNN模型基础之上引入改进的鲸鱼优化算法.研究表明,基于CIWOA-BPNN算法的孪生体模型有效避免了BPNN模型陷入局部最优解.用CIWOA-BPNN算法预测压缩机效率相对误差小于0.6%,决定系数为0.99775,与传统模型相比大幅提升了预测精度. 展开更多
关键词 往复式空气压缩机 效率 BP神经网络 改进的鲸鱼优化算法
在线阅读 下载PDF
MPCVD设备样品台温控系统的设计
10
作者 张威 任天平 《机床与液压》 北大核心 2024年第5期144-149,共6页
由于传统MPCVD设备样品台温度控制需要使用手动调节样品台距等离子源的距离,且调节精度差,为此设计一种样品台温控系统,同时设计了样品台温控系统硬件控制器。该控制器以STM32F407单片机为核心,步进电机、丝杠、金属波纹管为执行机构,... 由于传统MPCVD设备样品台温度控制需要使用手动调节样品台距等离子源的距离,且调节精度差,为此设计一种样品台温控系统,同时设计了样品台温控系统硬件控制器。该控制器以STM32F407单片机为核心,步进电机、丝杠、金属波纹管为执行机构,通过控制样品台在腔体内距等离子源的距离,实现温度控制。并提出一种将改进鲸鱼算法(WOA)与神经网络PID控制算法结合的控制方法,实现PID参数的自适应调整。仿真和实验结果表明:相对于传统PID算法,使用该温控系统进行温度控制时,超调量更小,控制精度更高,控制效果有很大提升。 展开更多
关键词 MPCVD设备 温控系统 改进鲸鱼算法 BP神经网络
在线阅读 下载PDF
金刚石压机冷却水温控系统的设计 被引量:2
11
作者 黄祥辉 朱晓东 +1 位作者 任天平 苏宇锋 《机床与液压》 北大核心 2024年第4期93-99,共7页
针对当前金刚石压机冷却水温控系统使用传统PID算法控制精度低、温度波动大的问题,提出一种将改进鲸鱼算法与神经网络PID控制算法相结合的控制方法,实现PID参数的自适应调整。同时以GD32单片机为核心、步进电机为执行机构,设计循环冷却... 针对当前金刚石压机冷却水温控系统使用传统PID算法控制精度低、温度波动大的问题,提出一种将改进鲸鱼算法与神经网络PID控制算法相结合的控制方法,实现PID参数的自适应调整。同时以GD32单片机为核心、步进电机为执行机构,设计循环冷却水温控系统硬件控制器来控制流量调节阀的开度,实现温度控制。仿真和实验结果表明:与传统PID算法相比,使用该温控系统进行温度控制时,超调量更小,控制精度更高,控制效果有很大提升。 展开更多
关键词 金刚石压机 冷却水温度 改进鲸鱼算法 BP神经网络
在线阅读 下载PDF
基于改进WTD-SVD-WOA-LSTM方法的海杂波背景下小目标检测 被引量:1
12
作者 祝健 尚尚 +2 位作者 石依山 乔铁柱 刘强 《电讯技术》 北大核心 2024年第8期1219-1227,共9页
针对海面小目标因体积小、移速慢而导致的检测难问题,提出了一种改进WTD-SVD-WOA-LSTM检测方法。首先,利用改进小波阈值法(Wavelet Threshold Denoising, WTD)结合优化奇异值分解(Singular Value Decomposition, SVD)法对海杂波去噪;然... 针对海面小目标因体积小、移速慢而导致的检测难问题,提出了一种改进WTD-SVD-WOA-LSTM检测方法。首先,利用改进小波阈值法(Wavelet Threshold Denoising, WTD)结合优化奇异值分解(Singular Value Decomposition, SVD)法对海杂波去噪;然后,通过改进鲸鱼优化算法(Whale Optimization Algorithm, WOA)对长短期记忆神经网络(Long Short-term Memory, LSTM)的超参数选优,获得最佳预测模型;最后,根据预测误差均方根值进行小目标检测。利用冰区多参数成像X频段雷达(Ice Multiparameter Imaging X-band Radar, IPIX)实测海杂波数据进行验证,所提方法相较于单一LSTM检测方法,检测阈值区间更广,检测能力至少提高了16%。 展开更多
关键词 小目标检测 海杂波去噪 改进鲸鱼优化算法 长短期记忆神经网络
在线阅读 下载PDF
基于改进VMD-XGBoost-BiLSTM组合模型的光伏发电异常检测 被引量:6
13
作者 赵博超 马嘉骏 +2 位作者 崔磊 栾文鹏 朱静 《计算机工程》 CAS CSCD 北大核心 2024年第3期306-316,共11页
光伏发电是我国大力发展的重要新能源发电形式,其异常检测是为系统运维决策提供依据的重要环节。由组件老化、故障或不良因素造成的光伏系统运行状态异常将直接影响发电效率和能力,进而会对系统安全性和经济效益造成影响。然而,现有检... 光伏发电是我国大力发展的重要新能源发电形式,其异常检测是为系统运维决策提供依据的重要环节。由组件老化、故障或不良因素造成的光伏系统运行状态异常将直接影响发电效率和能力,进而会对系统安全性和经济效益造成影响。然而,现有检测方法存在识别异常类型不全面、对标注数据数量依赖性强、更新模型成本高、对噪声和测量误差敏感等局限性以及不适合大规模推广部署的缺点。为解决这一问题,提出一种基于历史发电量以及气象监测数据的光伏发电异常检测方法。利用基于异常值去除和相关性分析的预处理步骤去除原始数据中的噪声并筛选最佳特征。通过变分模态分解(VMD)将数据分解成多个模态分量以提取光伏发电量的周期和非周期特征。构建改进VMD-XGBoost-BiLSTM组合模型,利用自适应赋权、Attention机制和改进鲸鱼优化算法的特点完成光伏发电量常态预测。在此基础上,通过与实际测量值进行对比,利用设定的规则进行异常判断。实验结果表明,该方法相较于单一BiLSTM和XGBoost模型平均误差下降幅度超过20%,其中约15.67%的性能提升得益于所提改进措施。 展开更多
关键词 光伏发电异常检测 神经网络 变分模态分解 注意力机制 改进鲸鱼优化算法
在线阅读 下载PDF
基于相似日分析和改进鲸鱼算法优化LSTM网络模型的光伏功率短期预测 被引量:7
14
作者 薛阳 李金星 +2 位作者 杨江天 李清 丁凯 《南方电网技术》 CSCD 北大核心 2024年第11期97-105,共9页
为了解决环境温度、风速和太阳辐照度等诸多因素对光伏发电预测的制约,提出了一种基于相似日分析和改进鲸鱼算法优化的长短期记忆(long short-term memory,LSTM)神经网络模型来实现光伏功率短期预测。首先,采用Pearson相关系数进行特征... 为了解决环境温度、风速和太阳辐照度等诸多因素对光伏发电预测的制约,提出了一种基于相似日分析和改进鲸鱼算法优化的长短期记忆(long short-term memory,LSTM)神经网络模型来实现光伏功率短期预测。首先,采用Pearson相关系数进行特征选择以去除与光伏输出功率不相关的气象特征;其次,针对相似气象情况下光伏电站发电功率接近的实际情况,采用灰色关联分析(gray relation analysis,GRA)选取与预测日气象特征相似的日期作为训练集;然后,提出一种改进鲸鱼算法(improved whale algorithm,IWOA)来优化LSTM深度神经网络的超参数,使预测模型的均方根误差达到最小;最后,以澳洲Yulara沙漠3号光伏电站的光伏发电历史数据作为实验数据,用GRA-IWOALSTM神经网络模型进行预测。仿真结果表明,在不同的天气类型下与其他模型的预测效果相比,GRA-IWOA-LSTM模型的预测结果精度更高。 展开更多
关键词 相似日 光伏功率短期预测 灰色关联分析 改进鲸鱼优化算法 长短期记忆神经网络
在线阅读 下载PDF
基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型
15
作者 师国东 胡明茂 +3 位作者 宫爱红 龚青山 郭庆贺 谭浩 《计算机集成制造系统》 2025年第9期3467-3484,共18页
为有效预测车辆油耗,提高燃油经济性,促进节能减排,提出一种基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型。该模型首先采用极端梯度提升树(XGBoost)算法提取车辆油耗特征,以优化模型的输入变量,提高模型的泛化性和鲁棒性。然后,利用... 为有效预测车辆油耗,提高燃油经济性,促进节能减排,提出一种基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型。该模型首先采用极端梯度提升树(XGBoost)算法提取车辆油耗特征,以优化模型的输入变量,提高模型的泛化性和鲁棒性。然后,利用多策略改进的鲸鱼优化算法(MSIWOA)对长短期记忆神经网络(LSTM)中的超参数进行自适应寻优,并将优化后的超参数代入LSTM中对车辆油耗进行建模预测。结合实际车辆油耗算例进行对比实验,结果表明,相对于其他对比模型,XGBoost-MSIWOA-LSTM预测模型预测精度更高,对降低车辆油耗具有一定的指导意义。 展开更多
关键词 油耗预测 极端梯度提升树 多策略改进的鲸鱼优化算法 长短期记忆神经网络 自适应寻优
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部