期刊文献+
共找到80篇文章
< 1 2 4 >
每页显示 20 50 100
融合IVMD的海表温度时空智能预测方法 被引量:1
1
作者 韩莹 曹允重 +2 位作者 张凌珺 赵芮晗 董昌明 《海洋测绘》 CSCD 北大核心 2024年第3期53-57,61,共6页
精准的海洋表面温度(sea surface temperature, SST)预测在海洋和气象领域具有重要意义,如海洋渔业捕捞和海洋天气预报等。提出一种融合改进变分模态分解(improved variational mode decomposition, IVMD)的时空混合模型来预测SST,采用... 精准的海洋表面温度(sea surface temperature, SST)预测在海洋和气象领域具有重要意义,如海洋渔业捕捞和海洋天气预报等。提出一种融合改进变分模态分解(improved variational mode decomposition, IVMD)的时空混合模型来预测SST,采用中心频率观察法、残差指数最小化和皮尔逊相关系数改进变分模态分解(variational mode decomposition, VMD),去除SST序列冗余,利用图卷积神经网络(graph convolutional network, GCN)提取SST交互特征并结合长短时记忆网络(long short-term memory, LSTM)捕捉时间动态,提高预测精度。选取中国东海海域进行实证分析,实验结果表明:与现有模型对比,本文模型在均方根误差、平均绝对误差和平均绝对百分比误差3个指标上均有显著提升,验证了本文模型的有效性和稳定性。 展开更多
关键词 海洋表面温度预测 改进变分模态分解 皮尔逊相关系数 图卷积神经网络 长短时记忆网络
在线阅读 下载PDF
基于数据驱动和机理模型的机械钻速预测 被引量:1
2
作者 郑双进 江厚顺 +4 位作者 熊梦园 孟胡 詹炜 程荣升 王立辉 《钻采工艺》 北大核心 2025年第1期78-87,共10页
为准确预测复杂工况下的机械钻速,提出了一种基于数据驱动和机理模型的机械钻速预测方法。首先对收集的8000余条钻井数据进行斯皮尔曼和曼特尔特性分析,筛选出有效施工参数,采用变分模态分解算法(VMD)进行数据降噪,然后构建时序卷积网... 为准确预测复杂工况下的机械钻速,提出了一种基于数据驱动和机理模型的机械钻速预测方法。首先对收集的8000余条钻井数据进行斯皮尔曼和曼特尔特性分析,筛选出有效施工参数,采用变分模态分解算法(VMD)进行数据降噪,然后构建时序卷积网络结合长短期记忆网络(TCN-LSTM)作为数据驱动模型,并融合多元钻速预测机理模型,通过物理约束增强数据驱动模型的准确性与可解释性,实验表明融合模型比单一数据驱动模型或机理模型预测精度更高。随后,为进一步提升模型性能,采用了改进的蜣螂优化算法(IDBO)对TCN-LSTM模型进行优化,通过改进种群初始化和更新策略,实现了参数的高效搜索。消融实验及现场应用结果表明,对比BP、RF、LSTM、TCN模型,TCN-LSTM-IDBO模型可以实现机械钻速的精确预测,并且具有较好的泛化能力,可为钻井施工人员提供有力参考。 展开更多
关键词 机械钻速预测 时序卷积网络 长短期记忆网络 变分模态分解 蜣螂优化算法 数据分析
在线阅读 下载PDF
基于优化VMD和BiLSTM的短期负荷预测 被引量:3
3
作者 谢国民 陆子俊 《电力系统及其自动化学报》 北大核心 2025年第4期30-39,共10页
针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集... 针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集成预测模型。首先,对原始电力负荷数据进行变分模态分解,降低数据复杂度,在变分模态分解中,引入白鲸算法对分解层数和惩罚因子寻优,优化分解效果。其次,采用Logistic混沌映射、螺旋搜索和麻雀思想引入的多策略改进方法,增加原始沙猫群优化算法的种群多样性,提升收敛精度和全局搜索能力,并用改进后的算法对BiLSTM中的超参数进行优化。然后,结合AdaBoost集成学习算法构建ISCSO-Bi LSTM-AdaBoost预测模型,将分解后的各分量输入模型预测。最后将各预测值叠加,得到最终预测结果。实验结果表明,本文建立的组合模型预测精度高,稳定性强。 展开更多
关键词 电力负荷预测 变分模态分解 双向长短期记忆网络 改进沙猫群优化算法 集成学习算法
在线阅读 下载PDF
一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法
4
作者 张涛 魏彪 +2 位作者 李永健 马赫 何勇 《现代电子技术》 北大核心 2025年第12期54-60,共7页
针对滚动轴承故障诊断中种群分布不均匀及算法早熟收敛问题,提出一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法。首先,利用折射反向学习方法初始化种群,并生成反向解,有效扩大搜索范围;然后,将正余弦算法(SCA)策略引入北方苍鹰优化算法(NGO... 针对滚动轴承故障诊断中种群分布不均匀及算法早熟收敛问题,提出一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法。首先,利用折射反向学习方法初始化种群,并生成反向解,有效扩大搜索范围;然后,将正余弦算法(SCA)策略引入北方苍鹰优化算法(NGO)勘察阶段,通过非线性加权系数ω动态调节步长搜索因子,降低个体位置更新对局部信息的依赖,显著提高算法收敛速度与精度;最后,构建多尺度均值排列熵(MMPE)与峭度的融合指标作为适应度函数,增强故障特征敏感性。通过对不同的实测信号进行测试,结果表明,在强噪声干扰下,相较传统方法,所提方法可提前300 min(初期故障)和700 min(微弱故障)识别故障特征,验证了其工程实用性。 展开更多
关键词 正余弦算法 滚动轴承 故障诊断 改进北方苍鹰优化算法 多尺度均值排列熵 变分模态分解
在线阅读 下载PDF
基于最小二乘孪生极限学习机的水电系统发电能力预测方法
5
作者 李旻 孙大雁 +3 位作者 梁志峰 过夏明 吴刚 苗树敏 《水利水电技术(中英文)》 北大核心 2025年第8期162-174,共13页
【目的】针对传统水电发电能力预测精度低、稳定性差等问题。【方法】提出了耦合模态分解、机器学习和群体智能的水电系统发电能力混合预测模型。首先,利用逐次变分模态分解法(SVMD)对原始出力序列进行分解降噪,提取出多尺度特征信号进... 【目的】针对传统水电发电能力预测精度低、稳定性差等问题。【方法】提出了耦合模态分解、机器学习和群体智能的水电系统发电能力混合预测模型。首先,利用逐次变分模态分解法(SVMD)对原始出力序列进行分解降噪,提取出多尺度特征信号进行分类建模;随后,采用最小二乘孪生极限学习机(LSTELM)对各分解信号进行预测建模,同时运用改进灰狼优化算法(IGWO)对模型参数进行优化,以提升模型的预测性能;最后对各子序列预测结果进行集成,叠加得到最终的预测结果。【结果】结果显示:所提方法在三个水电站中的预测结果精准可靠。在池潭水电站中,预见期为1 d时,所提模型在直接策略和多输入多输出策略中预测结果的纳什系数(NSE)指标较极限学习机模型分别提高了12.88%和12.11%。预见期由1 d增长至8 d时,传统方法预测结果的NSE指标由0.8840和0.8885逐渐降低到0.5735和0.5671,而本文所提两种策略预测结果分别由0.9979和0.9961逐渐降低到0.9423和0.9286。【结论】结果表明:所提模型在复杂水电系统发电能力预测中具有较强的稳定性和泛化能力,SVMD有效降低了发电能力序列的噪声影响,最小二乘法和孪生结构提升了LSTELM模型的泛化能力,SVMD-IGWO-LSTELM模型在水文特性稳定的水电站预测精度更高,在水文特性复杂的水电站预测能力略有下降但依旧保持高精度,为变化环境下水电系统发电能力预测提供有效方法。 展开更多
关键词 逐次变分模态分解法 发电出力 最小二乘孪生极限学习机 改进灰狼优化算法 影响因素
在线阅读 下载PDF
基于VMD和改进Transformer模型的镍镉蓄电池SOH预测研究
6
作者 于天剑 冯恩来 +1 位作者 伍珣 张庆东 《铁道科学与工程学报》 北大核心 2025年第7期3266-3279,共14页
动车组镍镉电池容量表现出非线性特性和“记忆效应”等特征,严重影响传统动车组电池健康状态(state of health,SOH)预测模型的准确性。为准确预测动车组的SOH并提高其蓄电池管理系统的效率和可靠性,基于变分模态分解(variational mode d... 动车组镍镉电池容量表现出非线性特性和“记忆效应”等特征,严重影响传统动车组电池健康状态(state of health,SOH)预测模型的准确性。为准确预测动车组的SOH并提高其蓄电池管理系统的效率和可靠性,基于变分模态分解(variational mode decomposition,VMD)和改进的Transformer模型,提出一种综合预测框架。首先,通过白鲸优化算法(beluga whale optimization,BWO)对VMD的超参数进行优化,利用VMD分解重构准确捕捉电池在其整个生命周期中的容量退化特性,消除蓄电池记忆效应对SOH预测研究带来的不良影响;其次,在Transformer编码模块中嵌入了长短时记忆网络自编码模块(long short-term memory network autoencoder,LSTM Autoencoder),以有效提取电池健康退化的短期特征信息并压缩数据维度,从而降低模型复杂度;最后,将Transformer解码层替换为全连接神经网络,以降低模型复杂度和减少预测误差累积现象,从而提高模型的预测性能和运行效率。并且在验证方案中,以实际动车组蓄电池为研究对象,通过消融实验以及横向对比实验双向证明研究算法具有最高的预测精度,输出预测结果在均方根误差、平均绝对误差相较于其他模型平均降低了60.83%和62.14%,在决定系数上平均提升了6.73%,具有高度的准确性和鲁棒性。可以实现对电池SOH实现精确的预测,对电池健康状态进行有效监控,为电池检修工作提供数据支撑和方法支持。 展开更多
关键词 镍镉蓄电池 SOH预测 变分模态分解 长短时记忆网络自编码器 改进Transformer模型
在线阅读 下载PDF
基于IIVY-SVMD-MPE-SVM的开关柜局部放电故障识别 被引量:2
7
作者 解骞 郑胜瑜 +3 位作者 刘兴华 李辉 党建 解佗 《实验技术与管理》 北大核心 2025年第4期26-36,共11页
针对开关柜局部放电故障信息表征困难及局部放电故障识别准确率低等问题,该文提出了一种基于改进常青藤算法(improved Ivy algorithm,IIVY)的自动优化连续变分模态分解(successive variational mode decomposition,SVMD)与支持向量机(su... 针对开关柜局部放电故障信息表征困难及局部放电故障识别准确率低等问题,该文提出了一种基于改进常青藤算法(improved Ivy algorithm,IIVY)的自动优化连续变分模态分解(successive variational mode decomposition,SVMD)与支持向量机(support vector machine,SVM)的模式识别算法,实现了局部放电类型的故障识别。首先,融合空间金字塔匹配混沌映射、自适应t分布与动态自适应权三种策略提出IIVY算法;其次,对局部放电原始超声波信号进行SVMD并提取多尺度排列熵(multivariate permutation entropy,MPE),建立基于IIVY-SVMD-MPE的局部放电特征提取策略,利用IIVY算法自适应地选取SVMD惩罚因子α,结合相关系数筛选出最大的三个本征模态函数(intrinsic mode function,IMF)分量提取MPE,构建多维融合特征数据集;再次,提出并建立基于IIVY-SVM的开关柜局部放电故障识别模型,利用IIVY对SVM中惩罚参数C及核参σ进行自适应寻优;最后,通过对比验证表明所建立模型综合识别率更高、在不同评价指标上表现更佳,综合识别准确率达到98.8%,有效提高了故障识别的准确性与可靠性。 展开更多
关键词 超声波 改进常青藤算法 连续变分模态分解 多尺度排列熵
在线阅读 下载PDF
基于VMD-IDBO-LSTM的光伏功率预测模型 被引量:2
8
作者 乔雅宁 贾宇琛 +1 位作者 高立艾 温鹏 《现代电子技术》 北大核心 2025年第6期168-174,共7页
针对光伏发电功率波动性强和预测准确度低的问题,提出一种基于变分模态分解(VMD)、改进蜣螂算法(IDBO)优化长短期记忆(LSTM)网络的光伏功率预测模型。利用VMD对光伏功率时序数据进行分解,得到不同频率但具有一定规律的子序列,从而达到... 针对光伏发电功率波动性强和预测准确度低的问题,提出一种基于变分模态分解(VMD)、改进蜣螂算法(IDBO)优化长短期记忆(LSTM)网络的光伏功率预测模型。利用VMD对光伏功率时序数据进行分解,得到不同频率但具有一定规律的子序列,从而达到减少光伏功率波动性的目的。利用可变螺旋搜索策略、Lévy飞行策略和自适应t分布变异策略来改进蜣螂算法,对改进后的蜣螂算法与其他优化算法进行性能测试对比,经过改进的蜣螂算法来优化LSTM中的网络隐含层个数和初始学习速率并建立预测模型,将各个子序列的预测值相加,从而得出最后的预测功率结果。通过实际算例表明,与LSTM预测模型、DBO-LSTM预测模型、VMD-DBO-LSTM预测模型相比,VMD-IDBO-LSTM模型预测精度较高,更具有准确性。 展开更多
关键词 光伏发电 功率预测 变分模态分解 改进蜣螂算法 长短期记忆网络 优化算法
在线阅读 下载PDF
轴承剩余使用寿命预测的IDSA-LSTMNN 被引量:1
9
作者 梁天添 刘健 +2 位作者 梁贺焱 郑皓谦 王茂 《振动.测试与诊断》 北大核心 2025年第2期273-280,410,共9页
针对长短期记忆神经网络提取特征信息相关性和时间信息依赖性不足的问题,提出基于改进双多头注意力机制的长短期记忆神经网络(improved dual stage attention-based long short-term memory neural networks,简称IDSA-LSTMNN),以提高滚... 针对长短期记忆神经网络提取特征信息相关性和时间信息依赖性不足的问题,提出基于改进双多头注意力机制的长短期记忆神经网络(improved dual stage attention-based long short-term memory neural networks,简称IDSA-LSTMNN),以提高滚动轴承剩余使用寿命(remaining useful life,简称RUL)的预测精度。首先,采用改进的蜘蛛蜂优化器(improved spider wasp optimizer,简称ISWO)优化变分模态分解(variational mode decomposition,简称VMD)的关键参数,以提取更优的时频域特征;其次,结合时域和频域特征,构建特征数据集;然后,利用非线性成分改进核主成分分析(kernel principal component analysis,简称KPCA)的核函数,以优化特征降维过程;最后,利用多头注意力权重改进特征注意力机制和时间注意力机制提出IDSA,设计了轴承RUL预测的IDSA-LSTMNN,并进行了对比试验、抗噪性试验和泛化性试验。结果表明,相较于仅具有单头注意力机制的LSTMNN,不同工况、不同噪声环境下,IDSA-LSTMNN在预测精度、抗噪性和泛化性上具有显著优势。 展开更多
关键词 轴承寿命预测 变分模态分解 特征降维 长短期记忆神经网络 改进的注意力机制
在线阅读 下载PDF
IVMD融合奇异值差分谱的滚动轴承早期故障诊断 被引量:32
10
作者 唐贵基 王晓龙 《振动.测试与诊断》 EI CSCD 北大核心 2016年第4期700-707,810,共8页
针对滚动轴承早期故障阶段存在特征信号微弱、故障识别相对困难的问题,提出了融合改进变分模态分解和奇异值差分谱的诊断方法。原始信号经改进变分模态分解方法处理后,被分解为若干本征模态函数分量,利用包络谱稀疏度指标筛选出最佳分... 针对滚动轴承早期故障阶段存在特征信号微弱、故障识别相对困难的问题,提出了融合改进变分模态分解和奇异值差分谱的诊断方法。原始信号经改进变分模态分解方法处理后,被分解为若干本征模态函数分量,利用包络谱稀疏度指标筛选出最佳分量构造Hankel矩阵并进行奇异值分解,求取奇异值差分谱后,根据差分谱中的突变点重构信号,最终通过分析信号的包络谱可判断轴承的故障类型。利用改进变分模态分解融合奇异值差分谱的方法对轴承故障模拟及实测信号进行分析,均成功提取出微弱特征信息,能够实现滚动轴承早期故障的有效判别,具有一定的可靠性和应用价值。 展开更多
关键词 改进变分模态分解 奇异值差分谱 滚动轴承 早期故障
在线阅读 下载PDF
SO-VMD和IHFDE在旋转机械耦合故障辨识中的应用 被引量:1
11
作者 张文军 宋琳璐 +1 位作者 左小勇 王冠华 《机电工程》 北大核心 2025年第4期714-725,共12页
采用传统旋转机械故障诊断模型诊断单点故障而忽略多点故障缺陷,无法准确判断旋转机械的故障来源,提出了一种基于蛇优化器的优化变分模态分解(SO-VMD)、改进层次波动散布熵(IHFDE)和支持向量机(SVM)的旋转机械耦合故障诊断方法。首先,... 采用传统旋转机械故障诊断模型诊断单点故障而忽略多点故障缺陷,无法准确判断旋转机械的故障来源,提出了一种基于蛇优化器的优化变分模态分解(SO-VMD)、改进层次波动散布熵(IHFDE)和支持向量机(SVM)的旋转机械耦合故障诊断方法。首先,以模态分量的最大互信息系数为适应度函数,采用蛇优化器对变分模态分解的参数进行了优化,并对旋转机械振动信号进行了分解以得到模态分量;然后,对各模态分量的IHFDE特征值进行了提取,从而构建了故障特征矩阵;最后,将故障特征输入至SVM分类器中进行了分类识别,并实现了对旋转机械的故障诊断。利用滚动轴承和齿轮箱的多点故障数据集进行了实验分析,从信号处理和特征提取两方面进行了对比分析。研究结果表明:SO-VMD-IHFDE故障诊断方法在诊断旋转机械的单点和多点故障时分别取得了98.75%和100%的识别精度,验证了该方法的有效性。SO-VMD方法能够有效去除信号中的干扰噪声,提高特征的质量。和未采用SO-VMD方法得到的诊断结果相比,滚动轴承和齿轮箱的诊断准确率分别提高了3.33%和5.42%。IHFDE方法能够有效反映旋转机械的故障特性,准确率高于其他广泛使用的特征提取方法。旋转机械的故障诊断结果验证了改进层次分析在诊断准确率方面要优于粗粒化处理和传统层次分析。 展开更多
关键词 旋转机械 耦合故障诊断 变分模态分解 改进层次波动散布熵 蛇优化器 多点故障 耦合故障 信号高频特征信息
在线阅读 下载PDF
基于参数优化的JTC补偿电容容值估计与故障识别 被引量:2
12
作者 王世林 王钟锐 +2 位作者 陈光武 周鑫 李鹏 《铁道科学与工程学报》 北大核心 2025年第2期909-920,共12页
为满足“十四五”规划中提出的安全发展要求,针对无绝缘轨道电路中补偿电容故障识别困难、工作状态难以监测的问题,基于电磁场理论与传输线理论,建立了模拟轨道检测车技术的联合仿真模型,对补偿电容的工作状态进行分析并依据分析结果进... 为满足“十四五”规划中提出的安全发展要求,针对无绝缘轨道电路中补偿电容故障识别困难、工作状态难以监测的问题,基于电磁场理论与传输线理论,建立了模拟轨道检测车技术的联合仿真模型,对补偿电容的工作状态进行分析并依据分析结果进行故障识别与定位。首先,提出一种“相关性中心频率比”的适应度函数,以解决变分模态分解需要预先设置模态个数与惩罚因子的问题;其次,改进蜣螂优化算法,并利用改进后的算法对变分模态分解的参数进行寻优;最后,利用优化参数对仿真数据进行变分模态分解,以能量为特征进行特征提取,根据每个补偿电容的作用区域的能量特征来表征相应补偿电容的工作状态,得到区段中每个补偿电容的特征与容值大小的关系曲线,拟合后得到补偿电容容值估计公式,并利用轨道电路真实数据进行了验证。结果表明,改进算法较未改进的算法及其他主流优化算法,具备更快的收敛速度和更好的寻优结果,补偿电容容值估计值与实际数据的绝对误差仅为2.7μF,故障电容识别准确率达96.6%。研究结果表明,本文所提方法在检测车这一技术环境下,可以为现场补偿电容故障识别与容值估计提供了较为可靠的参考。 展开更多
关键词 补偿电容 容值估计 变分模态分解 有限元模型 改进的蜣螂优化算法
在线阅读 下载PDF
基于改进卷积神经网络的新能源并网短路电流预测技术
13
作者 于琳琳 蒋小亮 +2 位作者 贾鹏 孟高军 丁咚 《可再生能源》 北大核心 2025年第3期408-415,共8页
随着新能源的大规模并网,大电网短路电流特征更加复杂、难以预测。基于此,文章提出了一种基于改进卷积神经网络的新能源并网短路电流预测技术。首先,分析短路电流特点,对短路电流进行变分模态分解,得到本征模态函数;其次,对卷积神经网... 随着新能源的大规模并网,大电网短路电流特征更加复杂、难以预测。基于此,文章提出了一种基于改进卷积神经网络的新能源并网短路电流预测技术。首先,分析短路电流特点,对短路电流进行变分模态分解,得到本征模态函数;其次,对卷积神经网络进行改进,利用多尺度特征提取将电流故障数据特征最大化,引入注意力机制提取重要信息,卷积过程中使用跳跃连接的方式防止前向传递时信息丢失,有利于提高预测的准确性,构建基于改进卷积神经网络的短路电流预测模型;最后,经过PSCAD/EMTDC电网模型进行验证。结果表明,所提方法对短路电流峰值预测有着较高的精度,与常见的极限学习机、支持向量机相比,平均相对误差分别降低了0.61%,1.09%,验证了文章所提方法的有效性。 展开更多
关键词 新能源 改进卷积神经网络 短路电流预测 变分模态分解 注意力机制
在线阅读 下载PDF
基于误差补偿及IDBO-BiLSTM的风电功率短期预测 被引量:1
14
作者 魏振宇 姜雪松 杨立发 《科学技术与工程》 北大核心 2025年第6期2397-2405,共9页
针对风电出力稳定性差、随机性强而导致的模型精度差的问题。提出了一种基于二次分解误差补偿的风电功率短期预测模型。首先建立双向长短期记忆(bidirectional long short-term memory,BiLSTM)预测模型对风电功率进行预测并输出预测误... 针对风电出力稳定性差、随机性强而导致的模型精度差的问题。提出了一种基于二次分解误差补偿的风电功率短期预测模型。首先建立双向长短期记忆(bidirectional long short-term memory,BiLSTM)预测模型对风电功率进行预测并输出预测误差。其次,采用了一种利用混沌映射初始化种群、引入黄金正弦策略更新滚球蜣螂位置,并添加动态自适应性权重系数来更新偷窃蜣螂的位置的改进蜣螂优化算法(improved dung beetle optimizer,IDBO)对预测模型参数寻优,防止网络陷入局部最优解,自适应搜寻最优参数组合。然后,采用分解-重构-分解的策略,利用自适应噪声的完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)进行首次分解,并且引入样本熵(sample entropy,SE)与K均值(K-means)将序列按频率进行重构并通过变分模态分解(variational mode decomposition,VMD)将高频误差序列分解成不同频段的误差序列,提高后续模型的预测效率及预测精度。最后,将各分量输入误差补偿模型进行预测并引入Attention机制学习不同时间步的特征关系,并给与不同权重值,加强对关键信息的注意力。通过新疆达坂城风电场实测数据验证了所提模型预测精度高,具有显著优势。 展开更多
关键词 风电功率短期预测 双向长短期记忆网络 改进蜣螂优化算法 完全集合经验模态分解 变分模态分解
在线阅读 下载PDF
基于VMD-IOOA-BiGRU模型及误差补偿的短期电力负荷预测
15
作者 夏梦 于惠钧 《科学技术与工程》 北大核心 2025年第27期11642-11650,共9页
针对波动性大、复杂性高的电力负荷数据预测精度低的问题,提出一种结合变分模态分解(variational mode decomposition,VMD)、改进鱼鹰优化算法(improved osprey optimization algorithm,IOOA)与双向门控循环单元(bidirectional gated re... 针对波动性大、复杂性高的电力负荷数据预测精度低的问题,提出一种结合变分模态分解(variational mode decomposition,VMD)、改进鱼鹰优化算法(improved osprey optimization algorithm,IOOA)与双向门控循环单元(bidirectional gated recurrent unit,BiGRU)以及误差补偿(error compensation,EC)的混合电力负荷预测模型,称为VMD-IOOA-BiGRU-EC。首先,利用VMD对负荷序列进行初次分解,提取出多个模态和残差。然后,采用circle混沌映射、动态精英引导机制和“最优-随机均值”变异3种策略改进OOA优化BiGRU模型的相关超参数,以提升对初次分解的模态的预测效果;同时,针对初次分解产生的残差构建VMD-BiGRU模型,对其进行二次分解,再使用BiGRU对分解后的残差进行预测,即误差补偿。最后,将初次分解和二次分解后的各模态的预测结果进行叠加,得到最终的负荷预测值。在湖南省株洲市的真实电力负荷数据集上进行实验验证,结果显示所提方法的平均绝对误差、均方根误差和平均绝对百分比误差均低于其余对比模型,证明了其在处理复杂负荷数据时的有效性。 展开更多
关键词 变分模态分解 改进鱼鹰优化算法 双向门控循环单元 误差补偿 电力负荷预测
在线阅读 下载PDF
基于IPSO-VMD联合小波阈值的超低空磁异常信号去噪方法
16
作者 杨帆 徐春雨 李肃义 《电子测量与仪器学报》 北大核心 2025年第6期204-211,共8页
变分模态分解(VMD)方法在超低空磁异常信号去噪中具有较好的模态分解效果,然而在实际探测中需要依赖人工设定惩罚因子和模态分解参数,且磁异常信号微弱、环境噪声复杂。针对上述问题,提出了一种改进的粒子群优化变分模态分解(IPSO-VMD)... 变分模态分解(VMD)方法在超低空磁异常信号去噪中具有较好的模态分解效果,然而在实际探测中需要依赖人工设定惩罚因子和模态分解参数,且磁异常信号微弱、环境噪声复杂。针对上述问题,提出了一种改进的粒子群优化变分模态分解(IPSO-VMD)联合小波阈值的去噪方法。首先,通过引入自适应惯性权重和学习因子策略,利用排列熵作为自适应函数,实现了对上述参数自适应。之后,采用最优参数组合对信号进行分解,并对异常分量应用小波阈值去噪处理。最终,将信号重构并获得去噪后的信号。仿真实验结果表明,该方法相比其他方法将信噪比提升了约9.44 dB,相关系数达到约0.74,获得了良好的去噪效果。通过野外实验表明,去噪后的实测信号磁异常位置明显,有效降低了环境噪声对信号的干扰,显示出在野外超低空磁目标勘探中的应用潜力。 展开更多
关键词 超低空磁异常探测 改进粒子群优化(IPSO) 变分模态分解(VMD) 参数自适应 小波阈值
在线阅读 下载PDF
基于多任务学习组合模型的万能式断路器故障诊断方法
17
作者 王钰洁 赖冬明 +2 位作者 王立军 陈仁祥 何家乐 《高电压技术》 北大核心 2025年第5期2394-2403,共10页
针对万能式断路器的振动信号存在个体样本差异性、噪声干扰和分类器的参数难以确定等问题,提出一种基于多任务学习组合模型的万能式断路器故障诊断方法。首先,使用多元变经验模态分解(multivariate variational mode decomposition,MVMD... 针对万能式断路器的振动信号存在个体样本差异性、噪声干扰和分类器的参数难以确定等问题,提出一种基于多任务学习组合模型的万能式断路器故障诊断方法。首先,使用多元变经验模态分解(multivariate variational mode decomposition,MVMD)对振动信号进行分解并获取满足阈值要求的模态分量(intrinsic mode functions,IMFs),精准地对其进行时域和频域特征提取,减少噪声干扰和信号差异性造成的影响;再利用核主元分析(kernel principal component analysis,KPCA)算法对特征数据集进行降维;对比不同特征提取方法并验证MVMD-KPCA有效性与优势。用改进北方苍鹰优化(improved northern goshawk optimization,INGO)算法对核极限学习机(kernel extreme learning machine,KELM)的参数进行寻优,提升KELM的分类性能。最后,将降维的特征数据集输入INGO-KELM等模型中进行对比。结果表明:MVMD-KPCA方法在处理复杂、非线性数据集时表现出色,MVMD-KPCA与INGO-KELM相比于其他对比模型,此模型对万能式断路器的平均诊断精度能到达99.83%,具有更强的预测能力和稳定性。 展开更多
关键词 万能式断路器 故障诊断 多元变经验模态分解 改进北方苍鹰优化算法 核极限学习机
在线阅读 下载PDF
基于多元气象信息和改进组合神经网络的分布式光伏短期功率预测模型
18
作者 吴伟丽 米婵 李磊 《太阳能学报》 北大核心 2025年第11期181-192,共12页
为提高光伏发电功率预测的准确性,提出一种考虑邻近电站气象信息的多元气象特征和改进组合神经网络的光伏功率短期预测模型。首先,考虑相邻分布光伏电站之间的地理因素和气候条件的相关性,利用灰色关联法确定待预测电站的主要影响因素,... 为提高光伏发电功率预测的准确性,提出一种考虑邻近电站气象信息的多元气象特征和改进组合神经网络的光伏功率短期预测模型。首先,考虑相邻分布光伏电站之间的地理因素和气候条件的相关性,利用灰色关联法确定待预测电站的主要影响因素,构成多元气象信息关键特征作为预测模型的输入序列。其次,结合时间卷积网络(TCN)对输入序列信息有效提取和双向门控循环单元(BiGRU)对数据双向学习的优势,搭建TCN-BiGRU组合预测模型,并采用改进后的灰狼优化算法(IGWO)对BiGRU进行超参数寻优,实现光伏发电功率的高精度预测。最后,利用实测数据对所提模型加以验证,并与同类方法进行对比。结果表明与多元气象信息结合,预测模型能够有效提高一年四季中不同类型天气的发电功率预测精度;与其他预测模型相比较,即使在气候条件剧烈变化或随机变化时,所提方法的预测结果也能呈现出良好的预测精度。 展开更多
关键词 光伏功率预测 神经网络 变分模态分解 双向门控循环单元 时间卷积网络 改进灰狼优化算法
在线阅读 下载PDF
基于多层能量管理的混合储能风电功率波动平抑策略
19
作者 闫来清 王康 +3 位作者 许佳奇 翟卓涛 郑立星 刘淼 《太阳能学报》 北大核心 2025年第9期98-107,共10页
针对由超级电容与锂电池构成的混合储能系统,研究风电功率波动平抑策略实现风电平滑并网。首先,提出考虑窗口长度上限的自适应滑动平均算法对实时风电功率进行平滑处理,同时将计算得到的混合功率进行变分模态分解(VMD)得到模态分量,并... 针对由超级电容与锂电池构成的混合储能系统,研究风电功率波动平抑策略实现风电平滑并网。首先,提出考虑窗口长度上限的自适应滑动平均算法对实时风电功率进行平滑处理,同时将计算得到的混合功率进行变分模态分解(VMD)得到模态分量,并以复合熵为目标采用改进的猎食者算法(IHPO)对VMD预设参数寻优。其次,通过Hilbert变换确定高低频分界频率,将高频信号分配给超级电容,低频信号分配给锂电池。考虑储能设备充放电过程中的荷电状态(SOC),提出多层能量管理策略实现混合储能功率的动态优化与再分配。最后,通过仿真对比,验证该文所提策略能有效平抑风电功率波动,同时保证超级电容与锂电池两种储能设备的SOC工作在合理区间且累积偏差量较改进前分别减少13.8%和14.9%。 展开更多
关键词 风力发电 能量管理 变分模态分解 功率波动平抑 窗口长度上限 改进的猎食者算法
在线阅读 下载PDF
基于改进VMD-MCKD的RV减速器故障诊断
20
作者 罗捷 蔺梦雄 《机械设计》 北大核心 2025年第9期170-176,共7页
针对RV减速器振动信号中含有大量噪声干扰成分导致减速器故障特征提取难的问题,提出了一种基于粒子群优化变分模态分解(PSO-VMD)与最大相关峭度解卷积(PSO-MCKD)的RV减速器故障诊断方法。采用粒子群算法对变分模态分解中的分解层数c、... 针对RV减速器振动信号中含有大量噪声干扰成分导致减速器故障特征提取难的问题,提出了一种基于粒子群优化变分模态分解(PSO-VMD)与最大相关峭度解卷积(PSO-MCKD)的RV减速器故障诊断方法。采用粒子群算法对变分模态分解中的分解层数c、惩罚因子α、最大相关峭度解卷积的滤波器长度L及位移参数M进行参数寻优,以多尺度排列熵(PME)为适应性函数,得到最优分解组合。对采集到的振动信号进行变分模态分解,通过分解得到系列本征模态函数(IMF)分量;以峭度值为筛选准则,计算出与原信号相关度最大的IMF分量,利用得到的最优[L,M]值对原始信号进行最大相关峭度解卷积,凸显故障冲击特征;对降噪后的IMF分量进行希尔伯特包络解调,从而提取故障特征。同时进行对比试验,验证了该方法的优越性。试验结果表明:该方法能够准确提取故障特征,减小噪声的影响,实现RV减速器的故障诊断。 展开更多
关键词 RV减速器 故障诊断 粒子群优化算法 改进变分模态分解 最大相关峭度解卷积 多尺度排列熵
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部