期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于KPCA-ISSA-SVM的控制图模式识别
1
作者 梁旭 张朝阳 +1 位作者 吉卫喜 张文博 《组合机床与自动化加工技术》 北大核心 2025年第7期128-134,140,共8页
针对制造企业产品生产过程中质量监控智能化程度不足的问题,提出一种基于核主成分分析法(KPCA)与改进麻雀搜索算法(ISSA)优化支持向量机(SVM)的控制图模式识别方法。首先通过KPCA对控制图原始数据进行降维;其次,引入Logistic-Tent(LT)... 针对制造企业产品生产过程中质量监控智能化程度不足的问题,提出一种基于核主成分分析法(KPCA)与改进麻雀搜索算法(ISSA)优化支持向量机(SVM)的控制图模式识别方法。首先通过KPCA对控制图原始数据进行降维;其次,引入Logistic-Tent(LT)复合映射和高斯变异来改进麻雀搜索算法对SVM的关键参数进行寻优;接着建立KPCA-ISSA-SVM模型对控制图模式进行识别;最后通过仿真实验,将所提模型与RF、CNN、SVM、KPCA-SVM、KPCA-SSA-SVM、KPCA-PSO-SVM模型进行对比,并以某电梯零部件企业的机加工车间为例,验证了该方法的可行性和有效性。仿真与实例结果表明,所提方法是一种更有效的控制图模式识别方法。 展开更多
关键词 控制图 模式识别 核主成分分析 改进麻雀搜索算法 支持向量机
在线阅读 下载PDF
基于MISSA-SVM模型的边坡稳定性预测及应用 被引量:2
2
作者 王团辉 王超 +2 位作者 吴顺川 王琦玮 徐健珲 《中国安全科学学报》 CAS CSCD 北大核心 2024年第4期135-144,共10页
为提高边坡稳定性的预测精度,提出一种基于多策略改进的麻雀搜索算法(MISSA)优化支持向量机(SVM)的边坡稳定性预测模型。选取容重γ、黏聚力c、内摩擦角Ф、边坡角φf、边坡高度H、孔隙压力比ru等6个代表性特征作为模型的预测指标。针... 为提高边坡稳定性的预测精度,提出一种基于多策略改进的麻雀搜索算法(MISSA)优化支持向量机(SVM)的边坡稳定性预测模型。选取容重γ、黏聚力c、内摩擦角Ф、边坡角φf、边坡高度H、孔隙压力比ru等6个代表性特征作为模型的预测指标。针对麻雀优化算法(SSA)存在的收敛速度慢、精确度不高、易陷入局部最优等问题,引入一维复合混沌映射、正余弦算法(SCA)、Levy飞行机制和步长因子动态调整等策略进行优化改进,构建基于MISSA-SVM的边坡稳定性预测模型。将MISSA-SVM模型应用到大溪滑坡等9组边坡工程实例进行验证。结果表明:MISSA-SVM模型的准确率、精确率、召回率、F_(1)分数、均方误差(MSE)和曲线下面积(AUC)分别达到96.29%、92.3%、100%、0.96、0.016和0.967,均优于SSA优化的SVM模型和BP模型,预测结果与实际边坡状况完全吻合,表明MISSA-SVM模型具有较强的泛化能力。 展开更多
关键词 多策略改进麻雀搜索算法(MISSA) 支持向量机(SVM) 边坡稳定性 正余弦算法(SCA) 预测指标
在线阅读 下载PDF
基于SPA和IRCMMPE的旋转机械损伤识别方法
3
作者 李恒亮 张思婉 郭衡 《机电工程》 北大核心 2025年第6期1045-1054,共10页
基于单通道信号的旋转机械故障诊断方法的故障诊断效果通常比较依赖信号的质量,针对这一问题,提出了一种基于平滑先验分析(SPA)、改进精细复合多变量多尺度排列熵(IRCMMPE)和麻雀搜索算法优化支持向量机(SSA-SVM)的旋转机械损伤识别策... 基于单通道信号的旋转机械故障诊断方法的故障诊断效果通常比较依赖信号的质量,针对这一问题,提出了一种基于平滑先验分析(SPA)、改进精细复合多变量多尺度排列熵(IRCMMPE)和麻雀搜索算法优化支持向量机(SSA-SVM)的旋转机械损伤识别策略。首先,使用SPA将单通道信号分解为趋势项和去趋势项两种完全不同的分量,减少了分量的冗余,并将其组装为多通道信号以实现对样本的扩充;然后,采用IRCMMPE对多通道信号进行了特征提取以对比验证两个分量之间的相关性,获取了更能反映故障特性的特征;最后,将故障特征输入至SSA-SVM分类器中进行了故障识别,完成了对旋转机械的故障辨识和故障程度的判断,利用三个旋转机械数据集对SPA-IRCMMPE故障诊断方法的有效性进行了实验分析,并与其他故障诊断方法进行了对比研究。研究结果表明:SPA-IRCMMPE模型在诊断旋转机械不同故障类型时分别取得了100%和99.2%的识别准确率,平均识别准确率分别为99.76%和99.92%;而自制数据集的诊断精度达到了100%。相较于其他故障诊断方法,SPA-IRCMMPE模型仅需使用单个通道的振动信号且无需进行分量重要性评估,避免了分量取舍的问题,对振动信号的利用效率较高。 展开更多
关键词 旋转机械单通道信号 故障诊断 麻雀搜索算法优化支持向量机 改进精细复合多变量多尺度排列熵 平滑先验分析 离心泵 滚动轴承
在线阅读 下载PDF
特征降维下基于LSSA-SVM的转子系统故障诊断模型
4
作者 史宗帅 亚森江·加入拉 +1 位作者 崔鹏飞 靳鹏飞 《机电工程》 北大核心 2025年第3期463-471,500,共10页
针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,... 针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,采用小波分析技术对原始的转子振动信号进行了去噪处理,通过提取信号的时域特征以精确表征不同的转子故障状态,确保了该特征在噪声干扰下仍能清晰反映故障模式;然后,采用PCA对所提取的高维特征进行了降维处理,有效减少了冗余信息和噪声干扰,保留了最具代表性的关键特征,从而提高了特征提取的效率与诊断的可靠性;最后,设计了Levy飞行策略,对SSA进行了改进,得到了改进后的麻雀搜索算法(LSSA),以优化SVM的参数选择,进一步提升了分类器的泛化能力,利用改进的算法增强了该模型在复杂、有噪声环境下的诊断性能。研究结果表明:通过在多个含噪声的转子故障数据集上进行实验,该方法的故障诊断准确率达到了98.5%,相较于传统诊断方法,其具有更强的鲁棒性和较高的诊断精度,特别是在有噪环境中的优势更为明显。该方法有效解决了噪声干扰对故障诊断精度的影响问题,显著提高了转子故障诊断的准确性和稳定性,为实际工程中的转子故障诊断提供了一种有效的解决方案。 展开更多
关键词 轴承故障诊断 莱维飞行 改进的麻雀搜索算法 支持向量机 主成分分析 主成分分析特征降维 小波阈值函数去噪
在线阅读 下载PDF
基于EEMD能量矩与ISSA-SVM算法的GIS局部放电类型识别方法 被引量:18
5
作者 王利福 刘屹江泽 王燚增 《电子测量与仪器学报》 CSCD 北大核心 2022年第5期204-212,共9页
为有效识别气体绝缘开关组合电器(gas insulated switchgear,GIS)局部放电(partial discharge,PD)类型,进而保障设备安全稳定运行,提出了一种基于集合模态分解(ensemble empirical mode decomposition,EEMD)联合能量矩与改进麻雀群搜索... 为有效识别气体绝缘开关组合电器(gas insulated switchgear,GIS)局部放电(partial discharge,PD)类型,进而保障设备安全稳定运行,提出了一种基于集合模态分解(ensemble empirical mode decomposition,EEMD)联合能量矩与改进麻雀群搜索算法优化支持向量机(improved sparrow search algorithm-support vector machines,ISSA-SVM)算法的GIS局部放电类型识别方法。首先搭建能产生4种局部放电类型效果的GIS局部放电实验平台,以获取4种局部放电信号,然后利用EEMD联合能量矩算法分别对4种局部放电信号进行模态分解与特征向量提取,最后利用经ISSA算法优化后的SVM算法对GIS局部放电类型进行识别。实验结果表明,所提方法可有效识别GIS不同局部放电类型,且较PSO-SVM与SSA-SVM算法识别精度分别提高了16.7%与8.5%,验证了所提GIS局部放电类型识别方法的有效性以及优越性。 展开更多
关键词 气体绝缘开关组合电器 局部放电 集合模态分解 改进麻雀群搜索算法优化支持向量机(issa-svm)
在线阅读 下载PDF
基于NRS-ISSA-SVM的砂土液化判别模型 被引量:11
6
作者 姜礼涛 周爱红 +3 位作者 袁颖 刘育林 宁志杰 牛建广 《地震工程学报》 CSCD 北大核心 2022年第3期570-578,共9页
针对砂土液化判别中影响因素与砂土状态间映射关系的不确定性及模糊性等问题,在邻域粗糙集(Neighborhood Rough Set,NRS)因素约简的基础上,利用多策略融合的改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化支持向量机(Su... 针对砂土液化判别中影响因素与砂土状态间映射关系的不确定性及模糊性等问题,在邻域粗糙集(Neighborhood Rough Set,NRS)因素约简的基础上,利用多策略融合的改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化支持向量机(Support Vector Machine,SVM)参数C和g,构建了SVM砂土液化判别模型。以吉林松原地区的42组实例作为总体样本集,其中35组作为训练集,另外7组作为测试集,利用邻域粗糙集对9个影响因素约简得到4个因素,然后输入ISSA-SVM模型进行预测,并进行了约简得到的因素敏感性分析。结果表明:因素约简剔除了冗余属性,降低了模型复杂度;ISSA算法具有极强的探索性、收敛性和局部逃逸能力;相比于其他模型,NRS-ISSA-SVM砂土液化判别模型精度更高,泛化能力更强;建议要判别砂土的液化状态,需要准确查明水位埋深、地震烈度、标准贯入击数,非液化土层厚度这4个因素,尤其是前三个因素。通过易获取的影响因素建立NRS-ISSA-SVM砂土液化判别模型,不仅可准确地判断该区域其余未知点的砂土状态,还可为其他类似问题提供参考借鉴。 展开更多
关键词 砂土液化 预测模型 支持向量机 邻域粗糙集 多策略融合的改进麻雀搜索算法
在线阅读 下载PDF
基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断 被引量:4
7
作者 王福忠 任淯琳 +1 位作者 张丽 王丹 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第5期118-126,共9页
目的为了解决双向DC-DC电力变换器的软故障诊断精度不高的问题,方法提出基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断模型。首先,分析双向DC-DC电力变换器中电容、电感和MOSFET管的故障机理,通过仿真实验模拟各元件失效后变换器的输... 目的为了解决双向DC-DC电力变换器的软故障诊断精度不高的问题,方法提出基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断模型。首先,分析双向DC-DC电力变换器中电容、电感和MOSFET管的故障机理,通过仿真实验模拟各元件失效后变换器的输出电气参数变化,从而确定变换器不同元件故障时对应的故障特征参数;其次,构建改进的LSTM-SVM双向DC-DC电力变换器故障诊断组合模型,在LSTM中添加Mogrifier门机制,提高LSTM提取时间序列原始数据中微弱特征的能力;最后,由于传统LSTM的末端分类器为Softmax,其主要解决单一元件诊断问题,变换器故障类型较多,维数较高,所以采用麻雀搜索算法优化的SVM代替原有的Softmax函数,对LSTM输出的数据进行故障分类,提高故障诊断的准确率。设置双向DC-DC电力变换器充放电两种状态下,包含电解电容、电感和MOSFET单双管故障在内的24组故障,分别采用本文构建的改进的LSTM-SVM和原始的LSTM-SVM双向DC-DC变换器故障诊断模型进行诊断。结果结果表明,改进的LSTM-SVM故障诊断模型诊断准确率平均值为99.71%,原始的LSTM-SVM故障诊断模型诊断准确率平均值为88.48%,改进的LSTM-SVM故障诊断模型对各元件的故障诊断正确率均高于原始的LSTM-SVM故障诊断模型的。结论基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断模型实现了对双向DC-DC电力变换器中的电解电容、电感和MOSFET单双管故障的准确诊断。 展开更多
关键词 双向DC-DC变换器 软故障 改进长短期记忆网络 麻雀搜索 支持向量机 故障诊断
在线阅读 下载PDF
基于ISSA-HKLSSVM的浮选精矿品位预测方法 被引量:1
8
作者 高云鹏 罗芸 +2 位作者 孟茹 张微 赵海利 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期111-120,共10页
针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vecto... 针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vector Machine,HKLSSVM)的浮选过程精矿品位预测方法.首先采集浮选现场载流X荧光品位分析仪数据作为建模变量并进行预处理,建立基于最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)的预测模型,以此构建新型混合核函数,将输入空间映射至高维特征空间,再引入改进麻雀搜索算法对模型参数进行优化,提出基于ISSA-HKLSSVM方法实现精矿品位预测,最后开发基于LabVIEW的浮选精矿品位预测系统对本文提出方法实际验证.实验结果表明,本文提出方法对于浮选过程小样本建模具有良好拟合能力,相比现有方法提高了预测准确率,可实现精矿品位的准确在线预测,为浮选过程的智能调控提供实时可靠的精矿品位反馈信息. 展开更多
关键词 浮选 精矿品位 最小二乘支持向量机 改进麻雀搜索算法 预测模型
在线阅读 下载PDF
基于改进麻雀搜索算法和支持向量机的边坡稳定性 被引量:4
9
作者 连浩 周爱红 乐婧瑜 《科学技术与工程》 北大核心 2024年第10期4239-4246,共8页
边坡失稳是由多种因素共同作用的结果,常规的数学模型难以准确预测。为提高边坡稳定性预测精度,采用多策略融合改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化支持向量机(support vector machine,SVM),进而建立边坡稳... 边坡失稳是由多种因素共同作用的结果,常规的数学模型难以准确预测。为提高边坡稳定性预测精度,采用多策略融合改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化支持向量机(support vector machine,SVM),进而建立边坡稳定性预测模型(ISSA-SVM模型)。将重度、黏聚力、内摩擦角、边坡角、边坡高、孔隙压力比6项因素作为输入特征,将边坡稳定性状态作为输出结果,进而预测边坡稳定性。选取中外工程实例建立边坡数据库,将ISSA-SVM模型与SSA-SVM模型进行对比分析,通过灰色关联度分析法(grey relation analysis,GRA)进行敏感性分析。结果表明:ISSA-SVM模型预测精度更高、泛化能力更强,黏聚力和内摩擦角是对边坡稳定性最为敏感的因子。所提ISSA-SVM模型不仅能够准确地预测边坡稳定状态,还可以为其他领域相关问题提供参考。 展开更多
关键词 边坡稳定性 相关性分析 改进麻雀搜索算法 支持向量机 敏感性分析
在线阅读 下载PDF
基于CEEMD和改进SSA-LSSVM风功率预测模型 被引量:3
10
作者 常雨芳 朱自铭 +1 位作者 唐杨 黄文聪 《传感器与微系统》 CSCD 北大核心 2023年第10期130-134,共5页
为了保证电力系统的安全有效运行和便于调度人员调度,准确的风功率预测就变得极为重要,同时更高精度的预测模型也变为了研究热点。针对传统麻雀搜索算法(SSA)存在着容易出现局部最优解与全局搜索效果较差的问题,提出加入混沌序列与交换... 为了保证电力系统的安全有效运行和便于调度人员调度,准确的风功率预测就变得极为重要,同时更高精度的预测模型也变为了研究热点。针对传统麻雀搜索算法(SSA)存在着容易出现局部最优解与全局搜索效果较差的问题,提出加入混沌序列与交换学习策略的麻雀算法对最小二乘支持向量机(LSSVM)的惩戒和核函数参数寻优,避免了单一预测变量精度不高的问题;同时为了解决预处理数据自相关性,采用完备总体经验模态分解(CEEMD)对其分解,有效降低预测曲线滞后性;最终提出基于CEEMD和改进SSA-LSSVM的超短期风功率预测模型。仿真结果表明:该模型在一定程度上提高了预测精度,提升了该模型在风功率预测中的实际应用价值。 展开更多
关键词 风电功率预测 改进麻雀搜索算法 最小二乘支持向量机 完备总体经验模态分解
在线阅读 下载PDF
改进麻雀算法优化支持向量机的接触电阻预测 被引量:8
11
作者 回立川 张晓泽 李欢欢 《电工电能新技术》 CSCD 北大核心 2023年第8期60-68,共9页
针对接触电阻常规计算公式计算结果精度难以达到要求,本文提出一种改进麻雀搜索算法(IASSA)优化支持向量(SVM)的接触电阻预测模型。首先,运用经验模态(EMD)对接触电阻的时序数据进行分解,得到一系列不同特征的本征模函数(IMF);其次,在... 针对接触电阻常规计算公式计算结果精度难以达到要求,本文提出一种改进麻雀搜索算法(IASSA)优化支持向量(SVM)的接触电阻预测模型。首先,运用经验模态(EMD)对接触电阻的时序数据进行分解,得到一系列不同特征的本征模函数(IMF);其次,在对分解数据进行支持向量机建模时,采用一种多策略混合改进的麻雀算法去优化支持向量机的回归参数,该改进算法具有全局探索能力强、精度高等优点,从而可以有效避免支持向量机选择参数的盲目性;最后建立EMD-IAS-SA-SVM模型对每个IMF分量进行预测,在得到每个分量的预测结果后并进行重构,最终得到接触电阻的预测结果。实验结果表明,所提组合模型对接触电阻非平稳时间序列有较高预测精度和适用性。 展开更多
关键词 电接触 接触电阻 经验模态分解 改进麻雀搜索算法 支持向量机
在线阅读 下载PDF
改进SSA-LSSVM模型在埋地管道点蚀深度预测中的应用 被引量:2
12
作者 骆正山 徐龙寅 +1 位作者 骆济豪 王小完 《安全与环境学报》 CAS CSCD 北大核心 2023年第9期3115-3122,共8页
埋地管道点蚀深度受土壤环境、运输物质、管道材质等多种因素的影响,因此腐蚀数据存在不稳定性,会导致精确预测其点蚀深度存在较大难度,故提出RS结合MSSA-LSSVM预测模型。首先利用RS对腐蚀影响因素实现降维,提取关键影响因素;其次融合... 埋地管道点蚀深度受土壤环境、运输物质、管道材质等多种因素的影响,因此腐蚀数据存在不稳定性,会导致精确预测其点蚀深度存在较大难度,故提出RS结合MSSA-LSSVM预测模型。首先利用RS对腐蚀影响因素实现降维,提取关键影响因素;其次融合三步改进策略解决麻雀搜索算法已陷入局部最优等问题,利用时间复杂度分析对算法改进后性能进行验证;然后利用MSSA求解出LSSVM中核函数参数σ2和惩罚因子C的最优解,同时选取RBF核函数,使其预测性能达到最优,最终构建RS-MSSA-LSSVM的埋地管道点蚀深度预测模型。结果表明:优化后模型精度得到了极大的提升,且均优于其他模型,证明该模型鲁棒性较好。 展开更多
关键词 安全工程 埋地管道 点蚀深度 粗糙集(RS) 改进麻雀搜索算法(MSSA) 最小二乘支持向量机(LSSVM)
在线阅读 下载PDF
基于灰色关联分析与ISSA-LSSVM的配电网可靠性预测 被引量:6
13
作者 万俊杰 任丽佳 +2 位作者 单鸿涛 刘俊 张开宇 《控制工程》 CSCD 北大核心 2023年第5期856-864,共9页
为了准确高效地进行配电网可靠性预测,提出一种基于灰色关联分析与改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化最小二乘支持向量机(least squares support vector machine,LSSVM)的配电网可靠性预测模型(ISSA-LSSVM... 为了准确高效地进行配电网可靠性预测,提出一种基于灰色关联分析与改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化最小二乘支持向量机(least squares support vector machine,LSSVM)的配电网可靠性预测模型(ISSA-LSSVM)。首先,运用灰色关联分析法筛选出影响配电网可靠性的强相关影响因素;接着,引入自适应t分布策略和动态自适应权重对麻雀搜索算法进行创新性改进;然后,针对LSSVM模型中的参数选择盲目性的问题,采用改进后的麻雀搜索算法优化LSSVM的模型参数C和σ^(2)并得到最佳模型;最后,将ISSA-LSSVM模型应用于实际电网中,并与传统的LSSVM模型、PSOLSSVM模型、GA-LSSVM模型以及未改进的SSA-LSSVM模型的预测结果及误差进行对比。结果表明,所提模型的预测精度更高、稳定性更强。 展开更多
关键词 配电网可靠性预测 灰色关联分析 改进麻雀搜索算法 最小二乘支持向量机 参数寻优
在线阅读 下载PDF
基于ISSA-VMD的滚动轴承早期故障诊断方法 被引量:8
14
作者 刘玉明 刘自然 王鹏博 《机电工程》 CAS 北大核心 2023年第9期1426-1432,共7页
针对滚动轴承早期信号微弱导致故障特征难以提取和故障诊断准确率不高的问题,提出了一种基于改进麻雀搜索算法-变分模态分解(ISSA-VMD)和样本熵(SE)的滚动轴承早期故障特征提取方法。首先,在轴承早期故障诊断过程中,模态分解个数和惩罚... 针对滚动轴承早期信号微弱导致故障特征难以提取和故障诊断准确率不高的问题,提出了一种基于改进麻雀搜索算法-变分模态分解(ISSA-VMD)和样本熵(SE)的滚动轴承早期故障特征提取方法。首先,在轴承早期故障诊断过程中,模态分解个数和惩罚因子的选择对变分模态分解(VMD)的分解效果有着很大的影响,为消除人为选择参数的影响,将麻雀搜索算法(SSA)优化为改进麻雀搜索算法(ISSA),利用ISSA参数优化后的VMD方法对信号进行了分解;然后,计算了敏感固有模态函数(IMF)分量的样本熵,构成了特征向量;最后,将特征向量作为支持向量机(SVM)的输入,进行了滚动轴承早期故障类型的识别。研究结果表明:ISSA-VMD+样本熵特征提取模型的故障诊断准确率为98.3%,与SSA-VMD+样本熵、灰狼优化算法(GWO)-VMD+样本熵、鲸鱼优化算法(WOA)-VMD+样本熵、传统VMD+样本熵、经验模态分解(EMD)+样本熵等特征提取模型相比,故障诊断准确率分别提高了3.3%、6.6%、5%、3.3%、5%;该模型可以准确地提取故障特征,提高故障诊断准确率。 展开更多
关键词 轴承早期故障 故障特征提取 改进麻雀搜索算法-变分模态分解 样本熵 支持向量机 经验模态分解
在线阅读 下载PDF
基于优化相关向量机的人造板厚度在线检测 被引量:6
15
作者 刘汉林 朱良宽 AlAA M.E.Mohamed 《森林防火》 2021年第S01期7-15,共9页
针对人造板厚度检测系统检测精度不高的问题,提出一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化相关向量机(Relevance Vector Machine,RVM)的人造板厚度检测方法,以提高人造板厚度检测系统的检测精度。从两个... 针对人造板厚度检测系统检测精度不高的问题,提出一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化相关向量机(Relevance Vector Machine,RVM)的人造板厚度检测方法,以提高人造板厚度检测系统的检测精度。从两个角度对传统麻雀搜索算法进行改进:首先在初始种群位置中引入精英混沌反向学习机制,使算法的初始种群分布更加合理,提高了初始解的质量;然后通过引入一种变尺度混沌变异算子,对停滞的全局最优解进行变异,以增强算法的抗停滞的能力,在此基础上通过改进后的算法优化相关向量机的核函数参数,最后以中密度纤维板(Medium Density Fiberboard,MDF)为例开展了在线检测试验,获取试验数据并进行对比分析。结果表明:所提方法能够有效减少检测误差,提高测量精度。 展开更多
关键词 人造板 相关向量机 麻雀搜索算法 混沌映射 折射反向学习
在线阅读 下载PDF
计算机工程与设计 被引量:10
16
作者 石颉 杜国庆 《计算机工程与设计》 北大核心 2023年第3期954-960,F0003,共8页
针对麻雀搜索算法在迭代后期种群多样性减少、易陷入局部最优等问题,提出改进麻雀搜索算法(ISSA)。引入Sobol序列,提高初始种群的多样性;引入黄金正弦算法,平衡全局搜索和局部开发能力;引入高斯差分变异,提高种群跳出局部最优的能力。1... 针对麻雀搜索算法在迭代后期种群多样性减少、易陷入局部最优等问题,提出改进麻雀搜索算法(ISSA)。引入Sobol序列,提高初始种群的多样性;引入黄金正弦算法,平衡全局搜索和局部开发能力;引入高斯差分变异,提高种群跳出局部最优的能力。10种基准函数的测试结果表明,ISSA有着更好的寻优精度与收敛速度。使用ISSA对SVM的超参数进行寻优,构建分类模型并应用于断路器故障诊断,验证了该方法在工程应用上的可行性。 展开更多
关键词 改进麻雀搜索算法 Sobol序列 黄金正弦算法 高斯差分变异 支持向量机 参数优化 故障诊断 工程应用
在线阅读 下载PDF
基于LSSA-LSSVM的蚕茧解舒质量预测模型
17
作者 邵铁锋 黄程卓 +3 位作者 孙卫红 梁曼 赵卫章 杨华 《中国测试》 CAS 北大核心 2023年第7期48-53,共6页
针对煮茧工艺优化需根据解舒质量反复人工试煮而造成生产效率低、原料浪费等问题,基于LSSA-LSSVM算法,提出一种面向纤检机构真空减压煮茧工艺的蚕茧解舒质量预测模型。首先,提取蚕茧质量特性、真空减压煮茧工艺参数与解舒质量变量作为... 针对煮茧工艺优化需根据解舒质量反复人工试煮而造成生产效率低、原料浪费等问题,基于LSSA-LSSVM算法,提出一种面向纤检机构真空减压煮茧工艺的蚕茧解舒质量预测模型。首先,提取蚕茧质量特性、真空减压煮茧工艺参数与解舒质量变量作为最小二乘支持向量机(LSSVM)的输入与输出变量。其次,引入拉丁超立方抽样方法(LHS)与Levy飞行策略优化原始麻雀搜索算法的初始化方式与位置更新方式,获得改进的麻雀搜索算法(LSSA)。最后,利用LSSA得到LSSVM的最优超参数组合(γ*,σ2*),建立解舒质量预测模型。实验结果表明,该模型预测准确率均值可达94.75%,预测时间均值为0.15 s,满足煮茧工艺精度与实时性要求,可用于煮茧工艺参数仿真优化,进而减少试煮次数,提高生产效率,该方法同时可推广至缫丝企业。 展开更多
关键词 煮茧 解舒质量 改进的麻雀搜索算法 最小二乘支持向量机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部