期刊文献+
共找到909篇文章
< 1 2 46 >
每页显示 20 50 100
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
1
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
在线阅读 下载PDF
Scenario-oriented hybrid particle swarm optimization algorithm for robust economic dispatch of power system with wind power 被引量:2
2
作者 WANG Bing ZHANG Pengfei +2 位作者 HE Yufeng WANG Xiaozhi ZHANG Xianxia 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1143-1150,共8页
An economic dispatch problem for power system with wind power is discussed.Using discrete scenario to describe uncertain wind powers,a threshold is given to identify bad scenario set.The bad-scenario-set robust econom... An economic dispatch problem for power system with wind power is discussed.Using discrete scenario to describe uncertain wind powers,a threshold is given to identify bad scenario set.The bad-scenario-set robust economic dispatch model is established to minimize the total penalties on bad scenarios.A specialized hybrid particle swarm optimization(PSO)algorithm is developed through hybridizing simulated annealing(SA)operators.The SA operators are performed according to a scenario-oriented adaptive search rule in a neighborhood which is constructed based on the unit commitment constraints.Finally,an experiment is conducted.The computational results show that the developed algorithm outperforms the existing algorithms. 展开更多
关键词 wind power robust economic dispatch SCENARIO simulated annealing(SA) particle swarm optimization(PSO)
在线阅读 下载PDF
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
3
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
在线阅读 下载PDF
改进PSO-PH-RRT^(*)算法在智能车路径规划中的应用 被引量:1
4
作者 蒋启龙 许健 《东北大学学报(自然科学版)》 北大核心 2025年第3期12-19,共8页
在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(... 在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(*))算法.该算法在基于均匀概率的快速拓展随机树(PHRRT^(*))算法的基础上,利用粒子群算法更新方向概率作为随机树节点的速度方向,从而改善了节点的位置更新策略,并将节点到目标向量的距离和轨迹平滑度作为粒子群算法的适应度函数.最后在多种障碍环境下进行仿真.结果表明,PSO-PH-RRT^(*)算法能大大减少迭代时间成本,同时改善路径长度和平滑度. 展开更多
关键词 路径规划 RRT算法 改进粒子群优化算法 目标向量 代价函数 适应度函数
在线阅读 下载PDF
考虑综合效益的周期型停车预约分配模型
5
作者 宋现敏 刘博 +3 位作者 李海涛 湛天舒 李世豪 张云翔 《交通运输系统工程与信息》 北大核心 2025年第1期24-35,共12页
为解决停车预约服务平台与用户之间存在的泊位运营问题,本文基于停车分配过程中服务平台的直接收益与服务水平间的关系,考虑用户出行特征的多样性,提出一种停车预约分配优化模型。为实现平台运营服务收益最大化,以运营商收益最大和用户... 为解决停车预约服务平台与用户之间存在的泊位运营问题,本文基于停车分配过程中服务平台的直接收益与服务水平间的关系,考虑用户出行特征的多样性,提出一种停车预约分配优化模型。为实现平台运营服务收益最大化,以运营商收益最大和用户出行成本的综合效益最小为目标建立联合优化函数,构建考虑停车分配时效性的周期型最优停车预约分配模型(POPA),并设计自适应升温的模拟退火-粒子群优化算法求解大规模停车分配问题。实验结果表明:综合考虑分配时效性和平台收益等多个因素,预约平台的最佳分配时段长度应为1 h,改进算法使求解效果提高了6.14%,灵敏度分析证明了惩罚因子的引入可在不影响用户时间成本与车位利用率的情况下,使平台的用户请求接受率提升2.25%~18.17%;通过对比分析,所提模型较用户最优模型提升了38.11%的实际收益,较平台最优模型降低了15.31%的平均用户时间成本。此外,通过拓展性数值测试证明了所提模型在大规模复杂场景中的适用性和有效性。 展开更多
关键词 交通工程 泊位运营 整数规划模型 停车分配 模拟退火-粒子群优化算法
在线阅读 下载PDF
基于系统辨识和改进多目标粒子群算法的水泥原料配比优化
6
作者 秦红斌 陈龙 +1 位作者 唐红涛 张峰 《控制工程》 北大核心 2025年第7期1260-1270,共11页
为了得到高品质、低成本的水泥生料,对原料配比优化问题进行了研究。首先,针对原料氧化物含量波动和立磨工况变化的问题,提出了原料氧化物含量等效值的概念,将其作为水泥生料氧化物含量和原料配比之间的关系参数,并利用系统辨识方法对... 为了得到高品质、低成本的水泥生料,对原料配比优化问题进行了研究。首先,针对原料氧化物含量波动和立磨工况变化的问题,提出了原料氧化物含量等效值的概念,将其作为水泥生料氧化物含量和原料配比之间的关系参数,并利用系统辨识方法对其进行求解;然后,建立了以最小化原料成本和原料配比调整量为目标的原料配比多目标优化模型,将各项生料质量控制指标加入约束条件以保证解的可行性,并提出了改进多目标粒子群优化算法对模型进行求解。实验结果表明,相比于非支配排序遗传算法II(non-dominated sorting genetic algorithm II,NSGA-II)和人工配比,采用所提算法优化原料配比,不仅将各项生料质量控制指标较好地控制在目标范围内,还降低了原料成本。 展开更多
关键词 水泥原料配比 原料氧化物含量等效值 系统辨识 改进多目标粒子群优化算法
在线阅读 下载PDF
基于融合注意力机制BP神经网络的深基坑变形预测方法
7
作者 张明聚 秦胜旺 +3 位作者 李鹏飞 葛辰贺 杨萌 谢治天 《北京交通大学学报》 北大核心 2025年第2期95-104,共10页
针对单一反向传播(Back Propagation,BP)神经网络预测基坑开挖变形时泛化性差及容易出现局部最优解的问题,分别采用遗传算法(Genetic Algorithms,GA)、粒子群算法(Particle Swarm Optimization,PSO)进行优化,并融合注意力机制(Attention... 针对单一反向传播(Back Propagation,BP)神经网络预测基坑开挖变形时泛化性差及容易出现局部最优解的问题,分别采用遗传算法(Genetic Algorithms,GA)、粒子群算法(Particle Swarm Optimization,PSO)进行优化,并融合注意力机制(Attention)组合成GA-Attention-BP和PSO-Attention-BP神经网络模型.依托南京双子座基坑工程,采用PLAXIS 2D模拟了680组不同工况下围护结构及地表的变形特征,并结合20组南京地区基坑实测监测数据作为数据集,以均方误差(Mean Squared Error,MSE)、平均绝对误差(Mean Absolute Error,MAE)和决定系数(RSquare,R2)作为评价指标,将不同神经网络的预测值和实际监测值进行对比.研究结果表明:GAAttention-BP和PSO-Attention-BP的MSE分别为3.47和3.22,MAE分别为1.59和1.47,R2分别为0.93和0.96,较BP和Attention-BP神经网络有较大的性能提升,预测效果较好;基于注意力机制的权重分配结果表明,基坑深度和地下连续墙的宽度对围护结构变形的影响最为显著,其权重系数分别高达1.33和1.17. 展开更多
关键词 深基坑工程 数值模拟 注意力机制 反向传播 遗传算法 粒子群算法
在线阅读 下载PDF
基于语义相似度与改进PSO算法的云制造能力需求模型与匹配策略研究
8
作者 李晓波 郭银章 《现代制造工程》 北大核心 2025年第6期30-44,共15页
针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能... 针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能力需求模型的基础上,采用领域本体树的概念提出了概念相似度、句子相似度和数值相似度的计算方法,实现了基于语义相似度的云制造能力需求智能化服务搜索;然后,针对云制造能力的服务组合问题,在分析了制造能力服务质量(Quality of Service,QoS)属性的基础上,采用层次分析法(Analytic Hierarchy Process,AHP)将各个属性进行归一化求和,给出了一种基于改进PSO算法的服务组合方法;最后,通过实验对比发现所提出的方法优于现有方法并实现了云制造能力需求智能匹配原型系统。 展开更多
关键词 云制造能力 任务需求 搜索匹配 服务组合 语义相似度 改进粒子群优化算法
在线阅读 下载PDF
基于多目标粒子群-遗传混合算法的高速球轴承优化设计方法
9
作者 杨文 叶帅 +2 位作者 姚齐水 余江鸿 胡美娟 《机电工程》 北大核心 2025年第2期226-236,共11页
目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出... 目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出了一种基于多目标粒子群-遗传混合算法的球轴承结构优化设计方法。首先,建立了以轴承最大额定动载荷、最大额定静载荷和最小摩擦生热率为目标函数的优化数学模型;然后,利用多目标粒子群算法(MOPSO)的全局搜索能力和改进非支配排序遗传算法(NSGA-II)的进化操作,引入粒子寻优速度控制策略、交叉变异策略和罚函数机制,解决了带约束优化问题求解和局部最优问题,增强了算法的收敛速度和解集探索能力;最后,在特定工况下对轴承结构进行了优化,采用层次分析法,从Pareto前沿中优选了内外圈沟曲率半径系数、滚动体数量、滚动体直径和节圆直径的最优值。研究结果表明:在16 kN径向载荷、15 000 r/min的高转速工况下,以新能源汽车电驱系统6206型深沟球轴承为例进行了分析,结果显示,优化后的轴承接触应力下降了21.2%,应变下降了25.6%,摩擦生热下降了16.7%,体现了该方法在收敛性能、寻优速度等方面的优势。该优化设计方法可为球轴承的工程应用提供有价值的参考。 展开更多
关键词 高速球轴承结构设计 多目标粒子群-遗传混合算法 改进非支配排序遗传算法 优化设计目标函数 层次分析法 6206型深沟球轴承
在线阅读 下载PDF
基于改进Apriori算法的不良驾驶行为关联分析
10
作者 韩锐 于长海 +1 位作者 丁庆国 石朋炜 《现代电子技术》 北大核心 2025年第14期50-56,共7页
不良驾驶行为的复杂化趋势会对道路交通安全构成严重威胁。为挖掘不良驾驶行为的潜在规律,文章通过车载诊断系统(OBD)采集哈尔滨乘用车早晚高峰时段的行驶数据,利用Python数据处理平台识别超速、急变速、急转弯及快速变道共4种不良驾驶... 不良驾驶行为的复杂化趋势会对道路交通安全构成严重威胁。为挖掘不良驾驶行为的潜在规律,文章通过车载诊断系统(OBD)采集哈尔滨乘用车早晚高峰时段的行驶数据,利用Python数据处理平台识别超速、急变速、急转弯及快速变道共4种不良驾驶行为。基于行为数据集,提出一种改进的Apriori关联规则挖掘算法。引入粒子群优化(PSO)算法优化Apriori算法中的支持度与置信度两个重要参数,并使用哈希映射表提高Apriori算法的运行效率。实验结果表明,改进Apriori算法在两种数据集上的运行时间较传统Apriori算法分别提高8.26%、9.27%。关联结果显示,不良驾驶行为并非单独存在,其中急转弯、快速变道、急加速关联性最强,超速行为与急变速次之。该研究能够为驾驶风格量化分析提供参考,可应用于交通事故主动预警系统。 展开更多
关键词 驾驶安全 不良驾驶行为 数据挖掘 关联分析 改进Apriori算法 粒子群优化算法
在线阅读 下载PDF
基于改进PSO算法的下肢外骨骼控制系统设计
11
作者 凌六一 刘一铭 张奇 《科学技术与工程》 北大核心 2025年第14期5913-5923,共11页
针对样机建立简化的下肢外骨骼模型,应用D-H参数法进行动力学分析,并通过实验测得关节角度后进行拟合作为控制器输入。为了解决机器人的轨迹跟踪问题,利用传统PID控制拥有较好的跟随效果,但存在响应和寻参速度慢等问题;结合粒子群算法... 针对样机建立简化的下肢外骨骼模型,应用D-H参数法进行动力学分析,并通过实验测得关节角度后进行拟合作为控制器输入。为了解决机器人的轨迹跟踪问题,利用传统PID控制拥有较好的跟随效果,但存在响应和寻参速度慢等问题;结合粒子群算法后虽然寻参速度加快,仍出现收敛精度低以及易陷入局部最优解的问题,因此设计了一种基于混沌映射型改进粒子群算法的PID控制。结果表明,改进后随机性增强,寻参速度加快,跟踪误差更小;并采用Simscape将关节角度进行可视化仿真,结合实验多方面验证控制效果。 展开更多
关键词 下肢康复机器人 改进粒子群优化 PID控制 轨迹跟踪 SIMULINK仿真
在线阅读 下载PDF
基于PSO算法的低比转数冲压离心泵水力性能多目标优化
12
作者 郑水华 赵学燕 +2 位作者 章程 李奕良 柴敏 《农业机械学报》 北大核心 2025年第5期353-360,共8页
针对低比转数冲压离心泵水力性能偏低问题,以CDL1型多级冲压离心泵叶轮为研究对象,结合数值模拟和试验测试方法,对首级叶轮的水力性能进行分析。由于低比转数冲压离心泵叶轮水力性能受多个因素影响,本文使用拉丁超立方方法对首级叶轮各... 针对低比转数冲压离心泵水力性能偏低问题,以CDL1型多级冲压离心泵叶轮为研究对象,结合数值模拟和试验测试方法,对首级叶轮的水力性能进行分析。由于低比转数冲压离心泵叶轮水力性能受多个因素影响,本文使用拉丁超立方方法对首级叶轮各设计变量进行抽样形成样本空间并获得相应性能参数,进而建立Kriging代理模型分析各参数对叶轮水力性能的敏感性,选定叶轮关键影响参数为粒子群算法(PSO)输入,对多参数进行优化设计,在此基础上探究叶轮的水力性能和内流机制。结果表明,优化后的叶轮水力性能优于原始设计,最高效率点效率提升2.8个百分点,单级扬程提高0.4 m。 展开更多
关键词 低比转数冲压泵 水力性能优化 粒子群算法 数值模拟 试验测试
在线阅读 下载PDF
结合注意力机制和IPSO的石油化工过程变量预测方法
13
作者 杨琛 周宁 孔立新 《安全与环境学报》 北大核心 2025年第6期2179-2188,共10页
在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional... 在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional Long Short-Term Memory, BiLSTM)神经网络的预测模型,并特别引入注意力机制,以强化关键信息的表达。以北京市某化工企业初馏塔为研究对象,首先利用皮尔逊相关系数、最大信息系数筛选高相关性变量;同时,利用极端梯度提升(eXtreme Gradient Boosting, XGBoost)树构造关键衍生特征,增强输入变量的有效性。其次,采用BiLSTM建模,捕捉关键变量前后时序依赖性;同时结合IPSO优化隐藏层节点数、学习率、L2正则化系数和学习率调整因子,以获得最优超参数组合,实现对初馏塔换热终温的精确预测。试验结果表明,所提出的模型具有较强泛化能力,在预测准确率和稳定性方面均优于传统模型,不仅能有效避免陷入局部最优解,还能精准捕捉关键变量的变化趋势,可为实现石油化工过程关键变量的预测提供参考。 展开更多
关键词 安全工程 双向长短期记忆神经网络 注意力机制 极端梯度提升树 改进粒子群优化算法
在线阅读 下载PDF
油田卸水机械臂的设计及其液压控制系统的优化 被引量:2
14
作者 罗明 周建平 +1 位作者 周忠祥 许燕 《机床与液压》 北大核心 2025年第1期194-201,共8页
为了解决新疆部分地区采用水罐车向油田井口卸水时面临的人员占用较多和效率低的问题,设计一种油田卸水机械臂,以实现水罐车的自动卸水工作。对该机械臂进行结构设计,并优化其液压系统。在AMESim和Simulink中建立控制系统的仿真模型,并... 为了解决新疆部分地区采用水罐车向油田井口卸水时面临的人员占用较多和效率低的问题,设计一种油田卸水机械臂,以实现水罐车的自动卸水工作。对该机械臂进行结构设计,并优化其液压系统。在AMESim和Simulink中建立控制系统的仿真模型,并提出一种基于粒子群优化(PSO)算法的模糊PID控制策略。该控制策略引入非线性递减权重,对粒子群算法进行改进,采用改进后的PSO对量化因子和比例因子进行更新迭代,实现对模糊PID参数的优化。采用阶跃信号和正弦信号作为激励,通过上升时间、超调量和平均误差等指标来评价该算法的控制效果。最后,制作油田卸水机械臂样机和控制系统进行性能测试。实验结果表明:使用基于PSO的模糊PID控制时,机械臂调整迅速、运动平稳且定位准确度高,能够满足油田卸水的使用需求。 展开更多
关键词 油田卸水机械臂 液压系统 基于PSO的模糊PID 改进粒子群优化算法
在线阅读 下载PDF
电主轴恒定多应力加速退化试验优化设计 被引量:1
15
作者 王云艺 郭劲言 +3 位作者 王朝 孔令通 杨兆军 阿喜塔 《制造技术与机床》 北大核心 2025年第3期187-193,共7页
为有效缩短电主轴加速退化试验周期,控制试验成本,并提高可靠性评估精度,提出了一种改进的多应力恒定加速退化试验优化设计方法。通过以试验费用为约束条件,采用A和D双优化准则建立优化模型,先运用粒子群算法构造试验方案备选集,后利用M... 为有效缩短电主轴加速退化试验周期,控制试验成本,并提高可靠性评估精度,提出了一种改进的多应力恒定加速退化试验优化设计方法。通过以试验费用为约束条件,采用A和D双优化准则建立优化模型,先运用粒子群算法构造试验方案备选集,后利用Monte Carlo仿真方法生成加速退化试验的仿真故障数据,最终经统计分析得到加速退化试验(accelerated degradation test,ADT)最优试验方案。通过得出某型号电主轴的优化设计结果与现有常见的优化方法类比分析试验,证明了本方法可有效降低试验时间,提升试验效率,降低试验成本,具备可靠性与有效性。 展开更多
关键词 电主轴 加速退化试验 优化设计 粒子群算法 Monte Carlo仿真
在线阅读 下载PDF
突发公共卫生事件下救援物资配送方案研究 被引量:2
16
作者 帅春燕 张婷 +1 位作者 王文聪 欧阳鑫 《安全与环境学报》 北大核心 2025年第1期227-236,共10页
在突发公共卫生事件封控情况下,大规模应急救援物资的配送需要兼顾效率、成本及安全性,在有限的救援投入下获取最大化资源利用和最小化配送成本,同时避免人员的交叉感染。为此,提出了基于两层配送网络的应急物资配送方案,并提出改进粒... 在突发公共卫生事件封控情况下,大规模应急救援物资的配送需要兼顾效率、成本及安全性,在有限的救援投入下获取最大化资源利用和最小化配送成本,同时避免人员的交叉感染。为此,提出了基于两层配送网络的应急物资配送方案,并提出改进粒子群优化算法(Improved Particle Swarm Optimization Algorithm,IPSOA)对配送路径进行优化。首先,根据行政区划分以及物资需求点的空间分布、各需求点的居民人数和需求量,采用层次聚类算法建立由“物资储备中心-物资集散中心”和“物资集散中心-物资需求点”构成的两层配送网络,每层配送网络都由多配送中心和多需求点组成,该物资配送属于多配送车辆的多中心车辆路径规划问题(Multi-Depot Vehicle Routing Problem,MDVRP)。其次,为了获取合理高效的配送路径,以配送成本最小为目标,构建基于多约束的物资配送优化模型,并提出基于人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)的粒子群优化(AFSA-PSO)算法对两层配送网络进行求解。最后,以某市9个行政区在疫情封控期间的数据为例验证两层配送网络和AFSA-PSO算法的有效性。结果表明:构建的两层配送网络和AFSA-PSO算法能够对多车辆MDVRP问题进行有效求解,科学规划配送路径;算法对比发现,AFSA-PSO能够避免模型过早收敛,且能够获取比遗传算法和粒子群优化算法更少的车辆数和更短的配送路径,有效地降低配送成本,提高经济效益。 展开更多
关键词 公共安全 物资配送路径 改进粒子群优化算法 多车辆多中心车辆路径规划问题 分层聚类 公共卫生事件
在线阅读 下载PDF
基于PSO-PID的无人艇布放回收半主动式防摆系统控制研究 被引量:1
17
作者 李云龙 王生海 +3 位作者 赵明慧 翁晶 邓晨旭 韩广冬 《机床与液压》 北大核心 2025年第6期49-56,共8页
针对高海况下无人艇布放回收作业中,无人艇负载摆动幅度过大的问题,设计一种布置于船用吊机上的半主动式磁流变防摆装置,建立防摆系统动力学模型,同时将粒子群优化算法(PSO)和PID控制器相结合,实现了PID参数的自动最优选定。通过Simulin... 针对高海况下无人艇布放回收作业中,无人艇负载摆动幅度过大的问题,设计一种布置于船用吊机上的半主动式磁流变防摆装置,建立防摆系统动力学模型,同时将粒子群优化算法(PSO)和PID控制器相结合,实现了PID参数的自动最优选定。通过Simulink-Adams联合仿真,结果表明:在设定的3种工作场景下,采用PSO-PID控制器的防摆系统的平均摆动抑制率相比无防摆措施提升80%以上,其能耗相比1.2 A恒定电流至少降低40%,可适应于不同的工作场景,面对突发的复杂激励具有良好的动态性能和能耗控制,证明了防摆系统及其控制策略的有效性。 展开更多
关键词 无人艇布放回收 防摆装置 磁流变阻尼器 粒子群优化算法 水动力仿真
在线阅读 下载PDF
永磁同步电机粒子群滑模观测器无位置传感器控制 被引量:1
18
作者 张静 李贵远 +1 位作者 刘杰 崔安迪 《现代电子技术》 北大核心 2025年第6期161-167,共7页
针对永磁同步电机传统滑模观测器存在高频滑模噪声,从而导致精度低、较大抖振以及相位延迟的问题,以及使用固定的滑模参数会使估算精度受到参数干扰而产生误差的情况,造成控制精度比较低,提出一种改进的粒子群优化(IPSO)算法超螺旋滑模... 针对永磁同步电机传统滑模观测器存在高频滑模噪声,从而导致精度低、较大抖振以及相位延迟的问题,以及使用固定的滑模参数会使估算精度受到参数干扰而产生误差的情况,造成控制精度比较低,提出一种改进的粒子群优化(IPSO)算法超螺旋滑模观测器作为无位置传感器控制的改进方法。该方法首先进行永磁同步电机数学模型的建立,然后建立超螺旋滑模观测器,最后应用改进粒子群算法。超螺旋算法采用积分形式来消除高频噪声,减小误差抖振以及相位延迟。引入改进粒子群算法对滑模观测器参数进行滑模参数寻优,通过在线调整滑模系数可以获得较高的收敛速度和稳态精度。仿真和实验结果验证了该控制策略能有效抑制系统抖振,减小相位延迟,且估计精度高,进一步说明该策略在电动汽车中有一定的可行性。 展开更多
关键词 永磁同步电机 无位置传感器控制 超螺旋滑模观测器 改进的粒子群优化算法 滑模参数 高频噪声
在线阅读 下载PDF
基于改进粒子群算法的焊接缺陷三阈值图像分割方法
19
作者 罗威 吴超华 +2 位作者 肖俊 蔡舒 史晓亮 《科学技术与工程》 北大核心 2025年第22期9463-9470,共8页
为解决焊接缺陷图像分割的结果出现失真、分割效果差的问题,以轮辋生产过程中的裂纹和气孔焊接缺陷图像为研究对象,提出了一种基于模拟退火(simulated annealing,SA)策略改进粒子群算法(improved particle swarm optimization,IPSO)的... 为解决焊接缺陷图像分割的结果出现失真、分割效果差的问题,以轮辋生产过程中的裂纹和气孔焊接缺陷图像为研究对象,提出了一种基于模拟退火(simulated annealing,SA)策略改进粒子群算法(improved particle swarm optimization,IPSO)的焊接缺陷三阈值图像分割方法。首先通过灰度值、平均灰度值和中值灰度值建立图像的三维最大类间方差(Otsu)模型;其次引入自适应惯性权重和非对称学习因子并融入SA策略增强算法求解效率和跳出局部最优的能力;最后利用SA-IPSO算法优化三维Otsu模型求解得到最佳阈值对应的缺陷分割图像。采用不同算法和模型对焊接缺陷图像进行分割,结果表明:对于裂纹和气孔焊接缺陷图像,本文算法在峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)评价指标上均优于对比算法,在加快算法收敛的同时避免分割结果失真,提高了分割精度。 展开更多
关键词 阈值分割 三维Otsu 粒子群优化算法 模拟退火策略 焊接缺陷
在线阅读 下载PDF
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究
20
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子群优化算法 BP神经网络模型 核主成分分析(KPCA) 总磷浓度
在线阅读 下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部