The unmanned aerial vehicle(UAV)swarm technology is one of the research hotspots in recent years.With the continuous improvement of autonomous intelligence of UAV,the swarm technology of UAV will become one of the mai...The unmanned aerial vehicle(UAV)swarm technology is one of the research hotspots in recent years.With the continuous improvement of autonomous intelligence of UAV,the swarm technology of UAV will become one of the main trends of UAV development in the future.This paper studies the behavior decision-making process of UAV swarm rendezvous task based on the double deep Q network(DDQN)algorithm.We design a guided reward function to effectively solve the problem of algorithm convergence caused by the sparse return problem in deep reinforcement learning(DRL)for the long period task.We also propose the concept of temporary storage area,optimizing the memory playback unit of the traditional DDQN algorithm,improving the convergence speed of the algorithm,and speeding up the training process of the algorithm.Different from traditional task environment,this paper establishes a continuous state-space task environment model to improve the authentication process of UAV task environment.Based on the DDQN algorithm,the collaborative tasks of UAV swarm in different task scenarios are trained.The experimental results validate that the DDQN algorithm is efficient in terms of training UAV swarm to complete the given collaborative tasks while meeting the requirements of UAV swarm for centralization and autonomy,and improving the intelligence of UAV swarm collaborative task execution.The simulation results show that after training,the proposed UAV swarm can carry out the rendezvous task well,and the success rate of the mission reaches 90%.展开更多
船舶在自动靠泊过程中会受到风、浪、流和岸壁效应等因素的影响,故需要精确的路径规划方法防止靠泊失败。针对全驱动船舶靠泊过程的基于双深度Q网络(double deep Q network,DDQN)算法,设计了一种船舶自动靠泊路径规划方法。首先建立船...船舶在自动靠泊过程中会受到风、浪、流和岸壁效应等因素的影响,故需要精确的路径规划方法防止靠泊失败。针对全驱动船舶靠泊过程的基于双深度Q网络(double deep Q network,DDQN)算法,设计了一种船舶自动靠泊路径规划方法。首先建立船舶三自由度模型,然后通过将距离、航向、推力、时间和碰撞作为奖励或惩罚,改进奖励函数。随后引入DDQN来学习动作奖励模型,并使用学习结果来操纵船舶运动。通过追求更高的奖励值,船舶可以自行找到最优的靠泊路径。实验结果表明,在不同水流速度下,船舶都可以在完成靠泊的同时减小时间和推力,并且在相同水流速度下,DDQN算法与Q-learning、SARSA(state action reward state action)、深度Q网络(deep Q network,DQN)等算法相比,靠泊过程推力分别减小了241.940、234.614、80.202 N,且时间仅为252.485 s。展开更多
工业应用中,动态多变的流式数据特性使强化学习算法在训练过程中很难在模型收敛性与知识遗忘之间实现很好的平衡。考虑工业现场内容请求与当前生产任务具有高度相关性,提出一种基于集成深度Q网络算法(Integrated Deep Q-Network,IDQN)...工业应用中,动态多变的流式数据特性使强化学习算法在训练过程中很难在模型收敛性与知识遗忘之间实现很好的平衡。考虑工业现场内容请求与当前生产任务具有高度相关性,提出一种基于集成深度Q网络算法(Integrated Deep Q-Network,IDQN)的自适应缓存策略。算法在离线阶段利用不同历史任务数据,训练并保存多个历史任务模型。在线阶段每当检测到实时数据流的任务特征发生变化,则重新训练网络模型。如果实时数据流的特征隶属于历史任务,则向深度Q网络(Deep Q-Network,DQN)导入相应的历史任务模型进行网络训练。否则直接利用实时数据流训练并标记为新的任务模型。仿真实验结果表明,IDQN与参考算法相比,在内容请求流行度动态变化时能够有效减少模型收敛时间,提高缓存效率。展开更多
基金supported by the Aeronautical Science Foundation(2017ZC53033).
文摘The unmanned aerial vehicle(UAV)swarm technology is one of the research hotspots in recent years.With the continuous improvement of autonomous intelligence of UAV,the swarm technology of UAV will become one of the main trends of UAV development in the future.This paper studies the behavior decision-making process of UAV swarm rendezvous task based on the double deep Q network(DDQN)algorithm.We design a guided reward function to effectively solve the problem of algorithm convergence caused by the sparse return problem in deep reinforcement learning(DRL)for the long period task.We also propose the concept of temporary storage area,optimizing the memory playback unit of the traditional DDQN algorithm,improving the convergence speed of the algorithm,and speeding up the training process of the algorithm.Different from traditional task environment,this paper establishes a continuous state-space task environment model to improve the authentication process of UAV task environment.Based on the DDQN algorithm,the collaborative tasks of UAV swarm in different task scenarios are trained.The experimental results validate that the DDQN algorithm is efficient in terms of training UAV swarm to complete the given collaborative tasks while meeting the requirements of UAV swarm for centralization and autonomy,and improving the intelligence of UAV swarm collaborative task execution.The simulation results show that after training,the proposed UAV swarm can carry out the rendezvous task well,and the success rate of the mission reaches 90%.
文摘工业应用中,动态多变的流式数据特性使强化学习算法在训练过程中很难在模型收敛性与知识遗忘之间实现很好的平衡。考虑工业现场内容请求与当前生产任务具有高度相关性,提出一种基于集成深度Q网络算法(Integrated Deep Q-Network,IDQN)的自适应缓存策略。算法在离线阶段利用不同历史任务数据,训练并保存多个历史任务模型。在线阶段每当检测到实时数据流的任务特征发生变化,则重新训练网络模型。如果实时数据流的特征隶属于历史任务,则向深度Q网络(Deep Q-Network,DQN)导入相应的历史任务模型进行网络训练。否则直接利用实时数据流训练并标记为新的任务模型。仿真实验结果表明,IDQN与参考算法相比,在内容请求流行度动态变化时能够有效减少模型收敛时间,提高缓存效率。