期刊文献+
共找到209篇文章
< 1 2 11 >
每页显示 20 50 100
基于切削力的机床主轴轴向热误差建模新方法
1
作者 汤滨瑞 王四宝 +2 位作者 王浩 黄强 赵增亚 《计算机集成制造系统》 北大核心 2025年第2期544-553,共10页
为解决现有热误差建模方法依靠经验选择温度测量点,导致模型稳健性差等问题,提出一种基于切削力的机床主轴轴向热误差建模新方法。研究数控机床主轴轴向热误差对未变形切屑形貌的影响机制,建立考虑机床主轴轴向热误差的切削力模型,揭示... 为解决现有热误差建模方法依靠经验选择温度测量点,导致模型稳健性差等问题,提出一种基于切削力的机床主轴轴向热误差建模新方法。研究数控机床主轴轴向热误差对未变形切屑形貌的影响机制,建立考虑机床主轴轴向热误差的切削力模型,揭示相同切削工艺参数下的热误差致切削力演变规律;分析机床主轴轴向热误差与切削力的关联关系,利用支持向量回归建立基于切削力的机床主轴轴向热误差模型。与传统热误差模型相比,基于切削力的热误差建模方法不需要大量的温度传感器和复杂的温度敏感点确定过程,而且不用考虑温度敏感点动态变化对模型稳健性的影响。通过不同环境和工况下的实验证明,模型预测精度达到90%以上,具有较强的预测能力与泛化能力,为机床轴向热误差在线辨识提供了新方法,同时为机床在线误差补偿以及在智能制造过程中提升零件质量提供了技术基础。 展开更多
关键词 热误差建模 切削力 支持向量回归 数控机床
在线阅读 下载PDF
基于机器学习的冠心病风险预测模型构建与比较 被引量:2
2
作者 岳海涛 何婵婵 +3 位作者 成羽攸 张森诚 吴悠 马晶 《中国全科医学》 CAS 北大核心 2025年第4期499-509,共11页
背景冠状动脉粥样硬化性心脏病(以下简称冠心病)是全球重要的死亡原因之一。目前关于冠心病风险评估的研究在逐年增长。然而,在这些研究中常忽略了数据不平衡的问题,而解决该问题对于提高分类算法中识别冠心病风险的准确性至关重要。目... 背景冠状动脉粥样硬化性心脏病(以下简称冠心病)是全球重要的死亡原因之一。目前关于冠心病风险评估的研究在逐年增长。然而,在这些研究中常忽略了数据不平衡的问题,而解决该问题对于提高分类算法中识别冠心病风险的准确性至关重要。目的探索冠心病的影响因素,通过使用2种平衡数据的方法,基于5种算法建立冠心病风险相关的预测模型,比较这5种模型对冠心病风险的预测价值。方法基于2021年美国国家行为风险因素监测系统(BRFSS)横断面调查数据筛选出112606名研究对象的健康相关风险行为、慢性健康状况等24个变量信息,结局指标为自我报告是否患有冠心病并据此分为冠心病组和非冠心病组。通过进行单因素分析和逐步Logistic回归分析探索冠心病发生的影响因素并筛选出纳入预测模型的变量。随机抽取112606名受访者的10%(共计11261名),以8∶2的比例随机划分为训练与测试的数据集,采用随机过采样和合成少数过采样技术(SMOTE)两种过采样的方法处理不平衡数据,基于k最邻近算法(KNN)、Logistic回归、支持向量机(SVM)、决策树和XGBoost算法分别建立冠心病预测模型。结果两组年龄、性别、BMI、种族、婚姻状态、教育水平、收入水平、家里有几个孩子、是否被告知患高血压、是否被告知处于高血压前期、是否被告知患妊娠高血压、现在是否在服用高血压药物、是否被告知患有高脂血症、是否被告知患有糖尿病、吸烟情况、过去30 d内是否至少喝过1次酒、是否为重度饮酒者、是否为酗酒者、过去30 d内是否有体育锻炼、心理健康状况以及自我健康评价比较,差异有统计学意义(P<0.05)。逐步Logistic回归分析结果显示:年龄、性别、BMI、种族、教育水平、收入水平、是否被告知患高血压、是否被告知处于高血压前期、是否被告知患妊娠高血压、现在是否在服用高血压药物、是否被告知患有高脂血症、是否被告知患有糖尿病、吸烟情况、过去30 d内是否至少喝过1次酒、是否为重度饮酒者、是否为酗酒者以及自我健康评价为冠心病的影响因素(P<0.05)。风险模型构建的分析结果显示:k最邻近算法、Logistic回归、支持向量机、决策树和XGBoost采用SMOTE处理不平衡数据的总体分类精度分别为59.2%、67.4%、66.2%、69.2%和85.9%,召回率分别为75.2%、71.4%、70.5%、62.9%和34.8%,精确度分别为15.4%、18.2%、17.5%、17.6%和28.7%,F值分别为0.256、0.290、0.280、0.275和0.315,受试者工作特征曲线下面积分别为0.80、0.78、0.72、0.72和0.82;采用随机过采样处理不平衡数据的总体分类精度分别为62.5%、68.5%、69.0%、60.2%和70.1%,召回率分别为70.0%、69.5%、71.9%、69.0%和67.6%;精确度分别为15.8%、18.4%、19.1%、14.8%和19.0%,F值分别为0.258、0.291、0.302、0.244和0.297,受试者工作特征曲线下面积分别为0.80、0.77、0.72、0.72和0.83。结论本研究不仅确认了已知冠心病的影响因素,还发现了自我健康评价水平、收入水平和教育水平对冠心病具有潜在影响。在使用2种数据平衡方法后,5种算法的性能显著提高。其中XGBoost模型表现最佳,可作为未来优化冠心病预测模型的参考。此外,鉴于XGBoost模型的优异性能以及逐步Logistic回归的操作便捷和可解释性,推荐在冠心病风险预测模型中结合使用数据平衡后的XGBoost和逐步Logistic回归分析。 展开更多
关键词 冠心病 机器学习 风险预测模型 LOGISTIC回归 k最邻近算法 支持向量机 决策树 XGBoost
在线阅读 下载PDF
基于支持向量回归(SVR)的马尾松木材脱脂率预测
3
作者 郭佳伦 钟浩珉 +1 位作者 赵俊博 陈瑶 《北京林业大学学报》 北大核心 2025年第3期151-161,共11页
【目的】脱脂处理是提升松木制品性能的重要手段,但传统脱脂率检测方法耗时且破坏试样。本研究旨在探索一种快速、无损的脱脂率检测方法,基于木材表面颜色变化,利用支持向量回归(SVR)构建脱脂率预测模型。【方法】采用氨气-水蒸气在高... 【目的】脱脂处理是提升松木制品性能的重要手段,但传统脱脂率检测方法耗时且破坏试样。本研究旨在探索一种快速、无损的脱脂率检测方法,基于木材表面颜色变化,利用支持向量回归(SVR)构建脱脂率预测模型。【方法】采用氨气-水蒸气在高温条件下对马尾松木材进行处理,分析不同条件对木材表面颜色参数和脱脂率的影响,探讨其相关性。利用3种不同的核函数(多项式核函数、Sigmoid核函数、径向基函数)构建基于SVR的脱脂率预测模型,并通过比较选择最优模型。【结果】经氨气-水蒸气热处理脱脂后,马尾松表面明度(L^(*))和黄蓝指数(b^(*))低于未处理木材,红绿指数(a^(*))则高于未处理木材。随着氨水质量分数和处理温度的增加,L^(*)、a^(*)和b^(*)呈逐渐降低趋势,总色差(ΔE^(*))逐渐增大,脱脂率随之提高。在180℃、较高氨水质量分数的处理条件下,ΔE^(*)达到最大值58.89,脱脂率达到最高值70.00%。颜色参数与脱脂率呈局部二次函数关系,相关系数最高为0.713。在以径向基函数为核函数的SVR模型中,预测含脂率和脱脂率的均方根误差分别为0.523和4.315,决定系数分别为0.847和0.823,该预测模型可应用于脱脂率检测的前期筛选。【结论】本研究成功构建了基于SVR的马尾松木材脱脂率预测模型。该模型在脱脂率检测的前期筛选中具有一定的应用价值,能够在一定程度上实现检测过程的快速、简便和无损化。本研究为马尾松木材脱脂率检测的效率提升和质量改进提供了一种新的方法。 展开更多
关键词 支持向量回归 机器学习 预测模型 脱脂 马尾松 颜色参数
在线阅读 下载PDF
基于ISSA-HKLSSVM的浮选精矿品位预测方法 被引量:1
4
作者 高云鹏 罗芸 +2 位作者 孟茹 张微 赵海利 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期111-120,共10页
针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vecto... 针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vector Machine,HKLSSVM)的浮选过程精矿品位预测方法.首先采集浮选现场载流X荧光品位分析仪数据作为建模变量并进行预处理,建立基于最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)的预测模型,以此构建新型混合核函数,将输入空间映射至高维特征空间,再引入改进麻雀搜索算法对模型参数进行优化,提出基于ISSA-HKLSSVM方法实现精矿品位预测,最后开发基于LabVIEW的浮选精矿品位预测系统对本文提出方法实际验证.实验结果表明,本文提出方法对于浮选过程小样本建模具有良好拟合能力,相比现有方法提高了预测准确率,可实现精矿品位的准确在线预测,为浮选过程的智能调控提供实时可靠的精矿品位反馈信息. 展开更多
关键词 浮选 精矿品位 最小二乘支持向量机 改进麻雀搜索算法 预测模型
在线阅读 下载PDF
基于逻辑回归和支持向量机耦合模型的滑坡易发性分析 被引量:10
5
作者 李成林 刘严松 +3 位作者 赖思翰 王地 何星慧 刘琦 《自然灾害学报》 CSCD 北大核心 2024年第2期75-86,共12页
滑坡灾害的发生具有累进性,进行滑坡易发性评价是防灾减灾的前提。以四川省旺苍县为例,使用频率比法判断12个滑坡影响因子的各分级区间滑坡敏感性,经波段集统计确定11个滑坡影响因子作为滑坡易发性评价因子,通过建立逻辑回归-支持向量机... 滑坡灾害的发生具有累进性,进行滑坡易发性评价是防灾减灾的前提。以四川省旺苍县为例,使用频率比法判断12个滑坡影响因子的各分级区间滑坡敏感性,经波段集统计确定11个滑坡影响因子作为滑坡易发性评价因子,通过建立逻辑回归-支持向量机(logistic regression-support vector machine,LR-SVM)耦合模型,搭建滑坡易发性评价体系,完成旺苍县滑坡易发性评价并进行模型精度比较。研究结果表明:逻辑回归-支持向量机耦合模型的评价指标结果均优于逻辑回归模型,易发性分区结果更合理,预测精度更高;在低易发区选取非滑坡点为提高滑坡易发性评价性能作用明显;研究区内道路、高程和NDVI对滑坡发育的敏感性较强;高易发区主要分布于低海拔的水系和道路两侧。 展开更多
关键词 滑坡易发性评价 逻辑回归 支持向量机 耦合模型 旺苍县
在线阅读 下载PDF
基于3种机器学习算法构建宫颈癌术后尿潴留风险预测模型 被引量:8
6
作者 陆宇 江会 《护理研究》 北大核心 2024年第1期24-30,共7页
目的:运用决策树、逻辑回归和支持向量机构建宫颈癌根治性切除术后尿潴留风险预测模型并比较性能,为评估及预防宫颈癌术后尿潴留提供参考依据。方法:回顾性收集459例宫颈癌根治性切除术病人的临床资料,采用决策树、支持向量机和逻辑回归... 目的:运用决策树、逻辑回归和支持向量机构建宫颈癌根治性切除术后尿潴留风险预测模型并比较性能,为评估及预防宫颈癌术后尿潴留提供参考依据。方法:回顾性收集459例宫颈癌根治性切除术病人的临床资料,采用决策树、支持向量机和逻辑回归3种机器学习方法构建宫颈癌根治性切除术后尿潴留风险预测模型,采用准确性、召回率、精确率、F1指数和受试者工作特征(ROC)曲线下面积(AUC)评价模型性能。结果:共纳入病人的年龄、疾病分期、体质指数等8个变量。选择80%的数据集(367例)作为训练集,20%的数据集(92例)作为验证集,结果显示,决策树在训练集和验证集中准确率、召回率、精确率、F1指数和AUC都比支持向量机和逻辑回归更优,说明决策树在构建宫颈癌术后尿潴留风险预测模型中具有较高的准确率及较好的泛化性能;支持向量机在训练集中准确率、召回率、精确率、F1指数和AUC都比逻辑回归更优。同时,在验证集中,支持向量机的召回率和F1指数比逻辑回归更优,但是支持向量机的准确率、精确率和AUC却比逻辑回归差,说明支持向量机在宫颈癌术后尿潴留数据集中的泛化能力比逻辑回归差。结论:决策树在构建宫颈癌根治性切除术后尿潴留风险预测模型中具有较高的性能及较好的泛化能力,可为相关临床决策提供指导建议。 展开更多
关键词 宫颈癌 尿潴留 危险因素 机器学习 预测模型 决策树 支持向量机 逻辑回归
在线阅读 下载PDF
基于多阶段评审的大规模创新类竞赛评比方案 被引量:1
7
作者 张长恩 成清 +1 位作者 司悦航 黄金才 《计算机科学》 CSCD 北大核心 2024年第10期86-93,共8页
当前,大规模创新类竞赛层出不穷,这类竞赛的评比因专家的主观差异等原因成了亟待解决的难题。关注大规模创新类竞赛评比方案的研究与设计,通过对已有竞赛的打分结果进行分析,综合对比多种不同评比方案的优缺点,探寻最优的评比方案,以尽... 当前,大规模创新类竞赛层出不穷,这类竞赛的评比因专家的主观差异等原因成了亟待解决的难题。关注大规模创新类竞赛评比方案的研究与设计,通过对已有竞赛的打分结果进行分析,综合对比多种不同评比方案的优缺点,探寻最优的评比方案,以尽可能使评审流程程序化、高效化,节约人力与时间资源。首先,构建专家分配模型确定评审专家“交叉分发”方案,运用改进模拟退火算法求解,验证了模型与算法的高精度和高效率;然后,构建加权模型对比4类标准分计算方法,设计基于专家权重的改进标准分计算方法;最后,考虑大极差对创新性的关联性,建立极差回归模型,进行基于极差的模型评估。所提模型与算法适用范围广,具有重要现实参考意义与高应用价值。 展开更多
关键词 评审模型 整数规划 模拟退火 支持向量机回归 创新性设计
在线阅读 下载PDF
核泄漏事故风险评估中的概率分析及预测 被引量:1
8
作者 何博文 关群 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第2期161-168,共8页
文章利用逻辑回归模型(logistic regression model,LRM)、线性判别模型(linear discriminant model,LDM)和支持向量机(support vector machine,SVM)3种统计模型,从核反应堆的内部和外部因素2个方面评估其在核泄漏事故中所体现的相关安... 文章利用逻辑回归模型(logistic regression model,LRM)、线性判别模型(linear discriminant model,LDM)和支持向量机(support vector machine,SVM)3种统计模型,从核反应堆的内部和外部因素2个方面评估其在核泄漏事故中所体现的相关安全性能。针对每种模型,利用数理统计理论探究核反应堆相关影响因素与其发生核泄漏事故的概率。研究发现核反应堆外部因素有主导内部因素的趋势并在整个核泄漏事故风险中占有举足轻重的地位。文章提供的模型分析与预测结果可为核反应堆工程师及其相关决策者在核反应堆的选址、设计及建设运营等方面提供参考。 展开更多
关键词 核泄漏 风险评估 概率分析 逻辑回归模型(LRM) 线性判别模型(LDM) 支持向量机(SVM)
在线阅读 下载PDF
基于灰狼优化支持向量机回归与SHAP值的锡冶炼能耗预测 被引量:6
9
作者 马朝君 彭巨擘 +4 位作者 袁海滨 郑光发 么长慧 章夏冰 冯早 《有色金属(冶炼部分)》 CAS 北大核心 2024年第2期1-7,共7页
锡冶炼过程综合能源消耗占整个锡生产过程90%,存在很大节能潜力。针对锡冶炼过程综合能耗机理模型难以建立、导致预测准确度不高的问题,提出灰狼优化的支持向量机回归(GWO-SVR)模型用于锡冶炼过程综合能耗的预测,并以某锡冶炼厂为例,将... 锡冶炼过程综合能源消耗占整个锡生产过程90%,存在很大节能潜力。针对锡冶炼过程综合能耗机理模型难以建立、导致预测准确度不高的问题,提出灰狼优化的支持向量机回归(GWO-SVR)模型用于锡冶炼过程综合能耗的预测,并以某锡冶炼厂为例,将所提模型与SVR、RF(随机森林)、BP(反向传播神经网络)、LR(线性回归)模型进行比较。结果表明,GWO-SVR模型可获得最理想的预测结果,在预测精度上相比于其他机器学习算法有着巨大优势。此外,使用SHAP值从全局解释和单样本解释两个方面解释所建立的GWO-SVR模型,可视化特征对输出的贡献,增加了GWO-SVR的可解释性,并以此制定可靠的节能策略。 展开更多
关键词 锡冶炼预测模型 模型可解释性 支持向量机回归 灰狼优化算法
在线阅读 下载PDF
基于鲸鱼优化算法-支持向量回归的汽车运动状态估计 被引量:3
10
作者 尤勇 孟云龙 +1 位作者 吴景涛 王长青 《中国机械工程》 EI CAS CSCD 北大核心 2024年第6期973-981,992,共10页
为了不依赖动力学模型精度而准确地获取车辆运动状态信息,提出一种基于鲸鱼优化算法-支持向量回归(WOA-SVR)的车辆状态估计算法。首先通过分析车辆动力学基本特性,设计了侧向速度、横摆角速度与车速分离的支持向量回归估计架构;然后对... 为了不依赖动力学模型精度而准确地获取车辆运动状态信息,提出一种基于鲸鱼优化算法-支持向量回归(WOA-SVR)的车辆状态估计算法。首先通过分析车辆动力学基本特性,设计了侧向速度、横摆角速度与车速分离的支持向量回归估计架构;然后对支持向量回归(SVR)模型进行多种行驶工况组成的数据集训练,在训练过程中运用鲸鱼优化算法对松弛变量中的惩罚因子c与核函数参数g进行寻优;最后对估计算法进行单移线、扫频试验虚拟仿真和实车ABS制动、双移线试验验证。结果表明,该算法有效提高了估计精度,且对车速的变化具有鲁棒性,可以实现准确的不依赖动力学模型精度的汽车运动状态估计。 展开更多
关键词 车辆状态估计 动力学模型 机器学习 支持向量回归 鲸鱼优化算法
在线阅读 下载PDF
基于改进开路电压模型和自适应平方根无迹卡尔曼滤波的锂离子电池宽温度多工况SOC估计 被引量:6
11
作者 王新栋 董政 +2 位作者 王书华 荆峰 邹兵 《电工技术学报》 EI CSCD 北大核心 2024年第24期7950-7964,共15页
锂离子电池荷电状态(SOC)的准确估计对于电池管理系统(BMS)的性能和可靠性至关重要。现有研究广泛关注电池模型、参数辨识及滤波算法的优化,对于电池开路电压(OCV)与SOC关系的准确映射研究较少,这限制了宽温度多工况下的SOC估计精度。... 锂离子电池荷电状态(SOC)的准确估计对于电池管理系统(BMS)的性能和可靠性至关重要。现有研究广泛关注电池模型、参数辨识及滤波算法的优化,对于电池开路电压(OCV)与SOC关系的准确映射研究较少,这限制了宽温度多工况下的SOC估计精度。该文创新性地提出一种针对宽温度的OCV-SOC映射修正策略,并构建基于支持向量机回归(SVR)的开路电压模型。该模型能准确地捕捉不同电池温度下的电池行为,提升SOC估计的稳定性、鲁棒性和初始误差修正能力。继而结合二阶RC等效电路模型、动态遗忘因子递归最小二乘法(DFFRLS)及自适应平方根无迹卡尔曼滤波(ASRUKF)实现SOC精确估计。在20%初始误差的条件下,所提方法在宽温度(包含极端温度)及多工况(包含复杂工况)测试中的方均根误差(RMSE)和平均绝对误差(MAE)均小于1.8%,该方法的适应性与准确性高,且算法复杂度未显著增加,为BMS中SOC的高精度估计提供了新的途径。 展开更多
关键词 锂离子电池 荷电状态 开路电压模型 支持向量机回归 卡尔曼滤波 宽温度多工况
在线阅读 下载PDF
基于机器学习的城市道路交通拥塞状态识别方法 被引量:1
12
作者 卞晨 《现代电子技术》 北大核心 2024年第14期142-146,共5页
传统的交通拥塞状态识别方法往往需要手动选择,提取特征,对于大规模和高维度的交通数据来说效率低下,难以动态地适应城市交通状态的变化,导致城市道路交通拥塞状态识别效果不佳。为此,提出一种基于机器学习的城市道路交通拥塞状态识别... 传统的交通拥塞状态识别方法往往需要手动选择,提取特征,对于大规模和高维度的交通数据来说效率低下,难以动态地适应城市交通状态的变化,导致城市道路交通拥塞状态识别效果不佳。为此,提出一种基于机器学习的城市道路交通拥塞状态识别方法。该方法以城市道路交通视频图像作为基础数据,基于机器学习方法结合深度学习技术,自动从数据中学习特征,提高特征提取效率;通过设置交通参数与拥堵临界点后,建立城市道路交通拥塞强度评价的Logistic回归模型,通过该模型来评价当前城市道路交通视频图像内交通拥塞强度,然后将城市道路交通拥塞强度评价结果输入到机器学习算法的支持向量机模型内,再使用麻雀算法对支持向量机模型进行改进,得到最佳的支持向量机模型参数,运用该最佳参数训练支持向量机模型后,输出城市道路交通拥塞状态识别结果。实验结果表明:该方法可有效评价不同类型城市道路交通拥塞强度,并可利用机器学习算法中的支持向量机模型输出城市道路交通拥塞状态,应用效果较佳。 展开更多
关键词 机器学习 城市道路 交通拥塞 状态识别 LOGISTIC回归模型 支持向量机模型 麻雀算法
在线阅读 下载PDF
基于IPSO-SVM的动态汽车衡故障诊断方法研究
13
作者 黄庆程 《机电工程》 CAS 北大核心 2024年第12期2310-2319,共10页
针对服役状态下,不易对轴重式动态汽车衡的灵敏度漂移等故障进行在线检测这一问题,提出了一种特征降维下结合莱维飞行改进粒子群算法优化支持向量机(IPSO-SVM)模型,以及信号特征提取与降维的动态汽车衡故障诊断方法。首先,提取了输出信... 针对服役状态下,不易对轴重式动态汽车衡的灵敏度漂移等故障进行在线检测这一问题,提出了一种特征降维下结合莱维飞行改进粒子群算法优化支持向量机(IPSO-SVM)模型,以及信号特征提取与降维的动态汽车衡故障诊断方法。首先,提取了输出信号的时域与频域特征,利用核主成分分析(KPCA),将非线性映射函数输入空间变换到高维空间,实现对特征向量的降维与筛选目的;然后,利用了莱维飞行改进粒子群优化算法(PSO)的寻优能力,并采用改进后的算法对支持向量机(SVM)进行了优化,得到了最优的参数组合,以此构建了全局最优的IPSO-SVM诊断模型;最后,采用建立的诊断模型,对不同车重、不同车速、不同轴型载荷工况下的动态汽车衡进行了故障诊断验证。研究结果表明:采用该动态汽车衡故障诊断方法,其诊断准确率可达98%,证实了引入莱维飞行后的改进粒子群算法可显著改进优化的效率和效果。相比现有诊断方法,IPSO-SVM诊断模型可有效解决PSO算法易陷入局部最优解的问题,准确率得到了较大提升,可实现对汽车衡系统动态故障工况下的全类型高精度诊断。 展开更多
关键词 质量计量仪器 故障诊断模型 莱维飞行 信号特征提取 信号特征降维 支持向量机 改进粒子群算法优化支持向量机 核主成分分析
在线阅读 下载PDF
基于支持向量机的输电线路覆冰回归模型 被引量:45
14
作者 戴栋 黄筱婷 +3 位作者 代洲 郝艳捧 李立浧 傅闯 《高电压技术》 EI CAS CSCD 北大核心 2013年第11期2822-2828,共7页
为对输电线路覆冰进行有效地监测、预测及预警,提出了一种基于支持向量机(support vector machine,SVM)的输电线路覆冰回归模型,用于输电线路覆冰情况的短期预测。这一研究工作是在MATLAB环境下,应用LIBSVM软件包编程进行建模仿真的;针... 为对输电线路覆冰进行有效地监测、预测及预警,提出了一种基于支持向量机(support vector machine,SVM)的输电线路覆冰回归模型,用于输电线路覆冰情况的短期预测。这一研究工作是在MATLAB环境下,应用LIBSVM软件包编程进行建模仿真的;针对实测微气象-覆冰数据多维、自由度大的特性,选定与覆冰相关性最大的气温、相对空气湿度数据以及覆冰参考量作为输入量,覆冰质量作为输出量;提出了基于支持向量机的超短期预测、短期迟滞预测和滚动预测3种预测模型,并通过实例数据仿真评估了模型的有效性。结果表明:超短期预测模型预测精度>90%,但时效仅15min、实用价值较低;短期迟滞预测模型和滚动预测模型在2h内预测精度均>80%,可适用于输电线路覆冰的短期实时预测;滚动预测模型理论上可预测更长期的覆冰情况,假设微气象参量恒定不变限制了其预测精度,若结合微气象预报将会有更好的预测效果。由于目前适用于建模仿真的完整覆冰数据较少,因此支持向量机用于建立输电线路覆冰回归模型的有效性和稳定性还有待进一步验证。 展开更多
关键词 覆冰 输电线路 支持向量机 回归模型 短期预测 在线监测
在线阅读 下载PDF
支持向量回归机在数控加工中心热误差建模中的应用 被引量:45
15
作者 苗恩铭 龚亚运 +1 位作者 成天驹 陈海东 《光学精密工程》 EI CAS CSCD 北大核心 2013年第4期980-986,共7页
研究并选择最佳模型对数控加工中心加工过程中的主要误差源-主轴热误差进行补偿,以便提高机床的加工精度。以leaderway-V450加工中心为实验对象,对主轴热误差支持向量回归机模型和多元回归模型进行了分析对比。首先,根据夏季数据建立了... 研究并选择最佳模型对数控加工中心加工过程中的主要误差源-主轴热误差进行补偿,以便提高机床的加工精度。以leaderway-V450加工中心为实验对象,对主轴热误差支持向量回归机模型和多元回归模型进行了分析对比。首先,根据夏季数据建立了多元回归模型和支持向量回归机模型。然后,将夏季另一批数据和秋季数据分别代入两种模型计算各模型补偿精度。最后,根据两种模型的精度变化规律比较两者稳健性。实验结果表明:支持向量回归机夏季模型用于补偿夏季和秋季热误差补偿标准差都小于2μm,而多元回归模型用于补偿夏季数据补偿标准差小于2μm,用于补偿秋季数据补偿标准差大于8μm。数据显示支持向量回归机模型用于热误差补偿不仅具有较高精度,同时具有较好鲁棒性。 展开更多
关键词 热误差 多元回归模型 支持向量回归机 数控加工中心
在线阅读 下载PDF
车内噪声声品质的支持向量机预测 被引量:32
16
作者 申秀敏 左曙光 +1 位作者 李林 张世炜 《振动与冲击》 EI CSCD 北大核心 2010年第6期66-68,共3页
对多元线性回归、神经网络和支持向量机的三个预测模型进行了研究。以车内噪声为例,建立了基于以上三种方法的车内噪声声品质预测模型,并采用留一法交叉检验作比较,所构建的支持向量机模型预测精度高于其他两种方法。实验结果同时也表明... 对多元线性回归、神经网络和支持向量机的三个预测模型进行了研究。以车内噪声为例,建立了基于以上三种方法的车内噪声声品质预测模型,并采用留一法交叉检验作比较,所构建的支持向量机模型预测精度高于其他两种方法。实验结果同时也表明,支持向量计算法具有较强的稳健性和良好的泛化能力,能够用于车内噪声声品质的预测。 展开更多
关键词 声品质 多元线性回归 神经网络 支持向量机
在线阅读 下载PDF
复合支持向量机方法及其在光谱分析中的应用 被引量:12
17
作者 安欣 苏时光 +3 位作者 王韬 徐硕 黄文江 张录达 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2007年第8期1619-1621,共3页
SVC和SVR是支持向量机研究的两个主要问题。文章把两种建模方法相结合,先由SVC模型判别分类,后由各类的局部SVR模型进行定量分析,提出了复合支持向量机(CSVM)方法。根据71个试验小区的水稻冠层高光谱与叶片含氮量建立定量分析模型,考证... SVC和SVR是支持向量机研究的两个主要问题。文章把两种建模方法相结合,先由SVC模型判别分类,后由各类的局部SVR模型进行定量分析,提出了复合支持向量机(CSVM)方法。根据71个试验小区的水稻冠层高光谱与叶片含氮量建立定量分析模型,考证了CSVM算法。基于模拟研究的思想,随机划分建模集和预测集,比例为55∶16。经过5次划分试验,复合支持向量机方法建模对叶片含氮量的预测值与凯氏定氮实际值之间的平均相关系数为0.89,平均绝对误差为0.088;而传统的支持向量机方法得到的平均相关系数为0.87,平均绝对误差为0.091。由此可见,复合支持向量机方法相对于传统的支持向量机方法预测精度有所提高。文章研究方法的提出为化学计量学定量分析研究给出了新的思路。 展开更多
关键词 复合支持向量机 高光谱 回归模型 叶片含氮量
在线阅读 下载PDF
弓网滑动电接触摩擦力特性与建模研究 被引量:22
18
作者 郭凤仪 陈明阳 +2 位作者 陈忠华 时光 回立川 《电工技术学报》 EI CSCD 北大核心 2018年第13期2982-2990,共9页
电气化铁路受电弓与接触网(弓网)系统的载流摩擦性能是影响列车受流和受电弓滑板磨损的关键因素。该文利用销盘式高速载流摩擦磨损实验机,以浸金属碳磨销与纯铜盘为摩擦副,获得与压力载荷、滑动速度、电流密度相关的摩擦力特性规律。摩... 电气化铁路受电弓与接触网(弓网)系统的载流摩擦性能是影响列车受流和受电弓滑板磨损的关键因素。该文利用销盘式高速载流摩擦磨损实验机,以浸金属碳磨销与纯铜盘为摩擦副,获得与压力载荷、滑动速度、电流密度相关的摩擦力特性规律。摩擦力随着压力载荷的增加而增大,随着电流密度的增加而减小,随着滑动速度的增加而增大。并且随着压力载荷的增加,摩擦力的增大幅度逐渐变缓。在此基础上,采用支持向量机建立弓网系统下与压力载荷、滑动速度、电流密度相关的摩擦力回归模型,采用遗传算法进行参数优化。利用实验数据,验证模型的有效性,为今后弓网系统摩擦力的进一步研究提供参考。 展开更多
关键词 弓网系统 载流摩擦 摩擦力 支持向量机 回归模型
在线阅读 下载PDF
用于回归估计的支持向量机方法 被引量:141
19
作者 杜树新 吴铁军 《系统仿真学报》 CAS CSCD 2003年第11期1580-1585,1633,共7页
用于回归估计的支持向量机方法以可控制的精度逼近非线性函数,具有全局最优、良好泛化能力等优越性能,得到广泛的研究。描述了该方法的基本思想,着重讨论了n-SVM、最小二乘SVM、加权SVM、线性SVM等支持向量机的新方法,降低训练时间和减... 用于回归估计的支持向量机方法以可控制的精度逼近非线性函数,具有全局最优、良好泛化能力等优越性能,得到广泛的研究。描述了该方法的基本思想,着重讨论了n-SVM、最小二乘SVM、加权SVM、线性SVM等支持向量机的新方法,降低训练时间和减少计算复杂性的分解法、SMO及增量学习算法。在非线性系统参数辨识、预测预报、建模与控制研究中,支持向量机是很有发展前途的研究方法。 展开更多
关键词 支持向量机 回归估计 预测预报 建模与控制
在线阅读 下载PDF
基于SVM回归模型的混合气体组分种类光谱识别方法 被引量:7
20
作者 白鹏 王建华 +2 位作者 王宏柯 张发启 刘君华 《光子学报》 EI CAS CSCD 北大核心 2008年第4期754-757,共4页
针对混合气体红外光谱分析中无法采用同一模型同时进行混合气体组分浓度的定量分析和组分种类的定性分析的问题,本文提出了基于SVM回归模型的混合气体组分种类光谱识别方法.通过详细推导,证明混合气体组分种类识别完全可以通过组分浓度... 针对混合气体红外光谱分析中无法采用同一模型同时进行混合气体组分浓度的定量分析和组分种类的定性分析的问题,本文提出了基于SVM回归模型的混合气体组分种类光谱识别方法.通过详细推导,证明混合气体组分种类识别完全可以通过组分浓度分析的SVM回归模型来求解,混合气体组分种类识别是一种特殊的回归.实验结果显示,该方法的混合气体组分种类的正确识别率不小于92.5%. 展开更多
关键词 支持向量机 回归模型 识别 红外光谱
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部