期刊文献+
共找到900篇文章
< 1 2 45 >
每页显示 20 50 100
Support vector machine forecasting method improved by chaotic particle swarm optimization and its application 被引量:11
1
作者 李彦斌 张宁 李存斌 《Journal of Central South University》 SCIE EI CAS 2009年第3期478-481,共4页
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for... By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects. 展开更多
关键词 chaotic searching particle swarm optimization (PSO) support vector machine (SVM) short term load forecast
在线阅读 下载PDF
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
2
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
在线阅读 下载PDF
Improved particle swarm optimization algorithm for fuzzy multi-class SVM 被引量:18
3
作者 Ying Li Bendu Bai Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期509-513,共5页
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its... An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 展开更多
关键词 particle swarm optimization(PSO) fuzzy support vector machine(FSVM) adaptive mutation multi-classification.
在线阅读 下载PDF
Recognition model and algorithm of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain 被引量:2
4
作者 Han-shan Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期273-283,共11页
In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization... In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain of six sky-screens detection sensor.Based on the measurement principle of the six sky-screens intersection test system and the characteristics of the output signal of the sky-screen,we analyze the existing problems regarding the recognition of projectiles.In order to optimize the projectile recognition effect,we use the support vector machine and basic particle swarm algorithm to form a new recognition algorithm.We set up the particle swarm algorithm optimization support vector projectile information recognition model that conforms to the six sky-screens intersection test system.We also construct a spatial-temporal constrain matching model based on the spatial geometric relationship of six sky-screen intersection,and form a new projectile signal recognition algorithm with six sky-screens spatial-temporal information constraints under the signal classification mechanism of particle swarm optimization algorithm support vector machine.Based on experiments,we obtain the optimal penalty and kernel function radius parameters in the PSO-SVM algorithm;we adjust the parameters of the support vector machine model,train the test signal data of every sky-screen,and gain the projectile signal classification results.Afterwards,according to the signal classification results,we calculate the coordinate parameters of the real projectile by using the spatial-temporal constrain of six sky-screens detection sensor,which verifies the feasibility of the proposed algorithm. 展开更多
关键词 Six sky-screens intersection test system Pattern recognition particle swarm optimization support vector machine PROJECTILE
在线阅读 下载PDF
New approach to training support vector machine 被引量:10
5
作者 Tang Faming Chen Mianyun Wang Zhongdong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期200-205,219,共7页
Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine requires the solution of a very la... Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine requires the solution of a very large quadratic programming problem. Traditional optimization methods cannot be directly applied due to memory restrictions. Up to now, several approaches exist for circumventing the above shortcomings and work well. Another learning algorithm, particle swarm optimization, for training SVM is introduted. The method is tested on UCI datasets. 展开更多
关键词 support vector machine quadratic programming problem particle swarm optimization.
在线阅读 下载PDF
基于PCA-NIPSO-SVM组合的铜锍中锑含量预测模型 被引量:1
6
作者 李林波 刘子杨 +4 位作者 杨建军 王昭峰 崔雅茹 段中兴 陈毅鹏 《有色金属工程》 CAS 北大核心 2024年第11期108-118,共11页
铜锍是造锍熔炼的产物,同时也是吹炼生产粗铜的原料,锑作为铜锍中很难脱除的杂质,其含量的控制对铜品位、火法精炼阳极炉寿命、电解精炼阴极板质量等均具有重要影响。鉴于目前铜冶炼中有关锑含量控制预测研究较少、特征选取和预测结果... 铜锍是造锍熔炼的产物,同时也是吹炼生产粗铜的原料,锑作为铜锍中很难脱除的杂质,其含量的控制对铜品位、火法精炼阳极炉寿命、电解精炼阴极板质量等均具有重要影响。鉴于目前铜冶炼中有关锑含量控制预测研究较少、特征选取和预测结果较差等问题,提出了多种算法组合并优化的支持向量机模型。使用灰色关联分析(GRA)和主成分分析(PCA)对特征参数进行筛选和降维,并融合改进Sine混沌映射的新型粒子群算法(NIPSO)对支持向量机(SVM)进行优化,最后根据冶炼数据进行测试、训练和预测。实验结果显示PCA-NIPSO-SVM相较于PCA-PSO-SVM、PSO-SVM和SVM对锑的预测性能有较大提升,其评价指标MAE、MSE和RMSE分别为0.0118155、0.0002256及0.0150197。基于改进Sine混沌映射粒子群算法优化的支持向量机预测模型能够较好地预测铜锍中锑的含量,为氧气底吹炼铜的配料方案和工艺控制提供借鉴。 展开更多
关键词 粒子群算法 灰色关联分析 支持向量机 Sine混沌映射
在线阅读 下载PDF
Fault diagnosis model based on multi-manifold learning and PSO-SVM for machinery 被引量:6
7
作者 Wang Hongjun Xu Xiaoli Rosen B G 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第S2期210-214,共5页
Fault diagnosis technology plays an important role in the industries due to the emergency fault of a machine could bring the heavy lost for the people and the company. A fault diagnosis model based on multi-manifold l... Fault diagnosis technology plays an important role in the industries due to the emergency fault of a machine could bring the heavy lost for the people and the company. A fault diagnosis model based on multi-manifold learning and particle swarm optimization support vector machine(PSO-SVM) is studied. This fault diagnosis model is used for a rolling bearing experimental of three kinds faults. The results are verified that this model based on multi-manifold learning and PSO-SVM is good at the fault sensitive features acquisition with effective accuracy. 展开更多
关键词 FAULT diagnosis multi-manifold learning particle swarm optimization support vector machine
在线阅读 下载PDF
RandWPSO-LSSVM optimization feedback method for large underground cavern and its engineering applications 被引量:2
8
作者 聂卫平 徐卫亚 刘兴宁 《Journal of Central South University》 SCIE EI CAS 2012年第8期2354-2364,共11页
According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flo... According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flow process of large underground cavern anchor parameters were established. By applying the optimization feedback method to actual project, the best anchor parameters of large surge shaft five-tunnel area underground cavern of the Nuozhadu hydropower station were obtained through optimization. The results show that the predicted effect of LSSVM prediction model obtained through RandWPSO optimization is good, reasonable and reliable. Combination of the best anchor parameters obtained is 114131312, that is, the locked anchor bar spacing is 1 m x 1 m, pre-stress is 100 kN, elevation 580.45-586.50 m section anchor bar diameter is 36.00 mm, length is 4.50 m, spacing is 1.5 m × 2.5 m; anchor bar diameter at the five-tunnel area side wall is 25.00 mm, length is 7.50 m, spacing is 1 m× 1.5 m, and the shotcrete thickness is 0.15 m. The feedback analyses show that the optimization feedback method of large underground cavern anchor parameters is reasonable and reliable, which has important guiding significance for ensuring the stability of large underground caverns and for saving project investment. 展开更多
关键词 random weight particle swarm optimization least squares support vector machine large undergrotmd cavern anchor oarameters optimization feedback rock-ooint safety factor
在线阅读 下载PDF
基于IPSO-SVM的动态汽车衡故障诊断方法研究 被引量:1
9
作者 黄庆程 《机电工程》 CAS 北大核心 2024年第12期2310-2319,共10页
针对服役状态下,不易对轴重式动态汽车衡的灵敏度漂移等故障进行在线检测这一问题,提出了一种特征降维下结合莱维飞行改进粒子群算法优化支持向量机(IPSO-SVM)模型,以及信号特征提取与降维的动态汽车衡故障诊断方法。首先,提取了输出信... 针对服役状态下,不易对轴重式动态汽车衡的灵敏度漂移等故障进行在线检测这一问题,提出了一种特征降维下结合莱维飞行改进粒子群算法优化支持向量机(IPSO-SVM)模型,以及信号特征提取与降维的动态汽车衡故障诊断方法。首先,提取了输出信号的时域与频域特征,利用核主成分分析(KPCA),将非线性映射函数输入空间变换到高维空间,实现对特征向量的降维与筛选目的;然后,利用了莱维飞行改进粒子群优化算法(PSO)的寻优能力,并采用改进后的算法对支持向量机(SVM)进行了优化,得到了最优的参数组合,以此构建了全局最优的IPSO-SVM诊断模型;最后,采用建立的诊断模型,对不同车重、不同车速、不同轴型载荷工况下的动态汽车衡进行了故障诊断验证。研究结果表明:采用该动态汽车衡故障诊断方法,其诊断准确率可达98%,证实了引入莱维飞行后的改进粒子群算法可显著改进优化的效率和效果。相比现有诊断方法,IPSO-SVM诊断模型可有效解决PSO算法易陷入局部最优解的问题,准确率得到了较大提升,可实现对汽车衡系统动态故障工况下的全类型高精度诊断。 展开更多
关键词 质量计量仪器 故障诊断模型 莱维飞行 信号特征提取 信号特征降维 支持向量机 改进粒子群算法优化支持向量机 核主成分分析
在线阅读 下载PDF
基于敏感度分析的球面磁悬浮飞轮电机多目标分层优化设计
10
作者 朱志莹 焦金帅 +2 位作者 徐政 孟凡浩 安聪 《电气工程学报》 北大核心 2025年第2期130-139,共10页
针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参... 针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参数划分为主敏感度参数和次敏感度参数,针对主敏感度参数和次敏感度参数,依次分别采用支持向量机进行非参数建模,并通过惯性权重自适应改变的混沌粒子群算法进行寻优;最后,通过有限元仿真验证了所提算法的有效性,结果表明优化后电机转矩提高6%,悬浮力提高27.99%。 展开更多
关键词 球面磁悬浮飞轮电机 参数敏感度分析 分层优化 支持向量机 惯性权重自适应改变的混沌粒子群算法
在线阅读 下载PDF
人工智能算法在滑坡监测与预测技术中的研究与应用
11
作者 程刚 吴勇飞 +1 位作者 曹德胜 吴亚熹 《地质科技通报》 北大核心 2025年第5期302-316,共15页
为减轻滑坡灾害风险,进一步保障区域可持续发展,开展有效的滑坡监测与预测研究具有重要的现实意义。通过研究滑坡监测与预测中的关键技术与方法,分析各类算法在滑坡监测与预测场景中的效率和精度,不断提升滑坡灾害防治水平。在特征提取... 为减轻滑坡灾害风险,进一步保障区域可持续发展,开展有效的滑坡监测与预测研究具有重要的现实意义。通过研究滑坡监测与预测中的关键技术与方法,分析各类算法在滑坡监测与预测场景中的效率和精度,不断提升滑坡灾害防治水平。在特征提取技术方面,对比分析了尺度不变特征变换(SIFT)、加速鲁棒特征(SURF)和自适应尺度不变特征变换(ASIFT)3种基于图像特征匹配算法的性能,其中ASIFT在匹配数量、精确率和召回率方面具有显著优势,尤其适用于准确性要求较高的复杂环境场景;在光流分析技术方面,探讨了基于Lucas-Kanade稀疏光流法和Horn-Schunck稠密光流法的应用效果,其中Lucas-Kanade稀疏光流法计算效率高,适合实时应用场景,但存在遗漏重要运动信息风险,Horn-Schunck稠密光流法能够提供全面的光流场信息,适用于环境复杂场景,但存在计算复杂度较高的不足,因而难以用于实时处理;在滑坡易发性预测方面,详细介绍了支持向量机(SVM)、决策树(DT)和随机森林(RF)等经典机器学习方法在滑坡预测中的应用优缺点,并重点研究了基于粒子群优化支持向量机(PSO-SVM)的模型性能,该模型通过优化超参数,显著提高了模型的分类准确度、泛化能力和预测精度。此外,通过引入Faster R-CNN模型,利用其先进的卷积神经网络架构,实现了复杂场景下滑坡事件的自动识别与分类,进一步提升了滑坡监测预警的效率和准确率。研究表明,ASIFT局部特征提取的精确率为0.84,Lucas-Kanade稀疏光流法的跟踪误差为0.12,PSO-SVM模型的均方根误差为0.52,Faster R-CNN模型在滑坡图像自动识别与分类方面的置信度可达0.98,综合性能较其他算法显著提升。综上所述,通过引入人工智能算法,结合多学科技术手段,全方面提升了滑坡监测与预测技术的效率和精度,研究成果为滑坡地质灾害防治提供了更有力的技术保障。 展开更多
关键词 人工智能算法 滑坡监测与预测 特征匹配 光流法 粒子群优化支持向量机(PSO-SVM)
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
12
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(PSO-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
基于BPSO-PSO-LSSVM算法的上肢sEMG分类
13
作者 贠今天 苗冠 +1 位作者 李帅 耿梓敬 《科学技术与工程》 北大核心 2025年第18期7686-7692,共7页
作为与人体运动密切相关的生理信号,表面肌电(surface electromyography, sEMG)信号的解析在人机交互领域具有重要的作用。针对肌电信号分类效率和精度难以兼顾的问题,提出了一种特征筛选与分类器超参数优化相结合的上肢sEMG分类方法,... 作为与人体运动密切相关的生理信号,表面肌电(surface electromyography, sEMG)信号的解析在人机交互领域具有重要的作用。针对肌电信号分类效率和精度难以兼顾的问题,提出了一种特征筛选与分类器超参数优化相结合的上肢sEMG分类方法,该方法采用二进制粒子群优化(binary particle swarm optimization, BPSO)算法对特征进行筛选后,进一步采用粒子群优化(particle swarm optimization, PSO)算法调整最小二乘支持向量机(least squares support vector machine, LSSVM)的超参数。通过采集人上体4个部位的表面肌电信号并提取其中48维特征,对上肢常见的4种动作进行分类实验,结果表明,BPSO-PSO-LSSVM算法仅保留肌电数据的21维特征,得到的平均分类准确率达到97.54%,证明该方法可以有效筛选出用于上肢动作分类的最佳特征组合,并且提高运动分类的准确率。 展开更多
关键词 表面肌电信号 特征选择 二进制粒子群优化 粒子群优化 动作分类 最小二乘支持向量机
在线阅读 下载PDF
平面并联五连杆机构的改进PSO-SVR可靠性分析 被引量:1
14
作者 户燕会 任燕 +1 位作者 户东亮 姜奎 《机械设计与制造》 北大核心 2025年第2期179-182,共4页
为获得更高的SVM精度,采用改进粒子群优化(PSO)算法来实现SVM惩罚参数以及核函数的寻优过程,进一步改进了PSO权系数并对学习因子进行了优化,获得了更强的全局和局部搜索性能,有效避免算法产生早熟以及搜索精度不高的情况,显著增强了SVM... 为获得更高的SVM精度,采用改进粒子群优化(PSO)算法来实现SVM惩罚参数以及核函数的寻优过程,进一步改进了PSO权系数并对学习因子进行了优化,获得了更强的全局和局部搜索性能,有效避免算法产生早熟以及搜索精度不高的情况,显著增强了SVM回归预测能力。以五连杆机构为例,开展可靠性灵敏度分析。研究结果表明:改进PSO-SVR模型获得了更高的可靠性,这里算法可以达到更高预测精度。改进PSOSVR获得了更快收敛速度,同时RMSE也更小。采用改进PSO方法寻求参数可以使SVR获得更高预测精度。采用改进PSO-SVR模型只需少量样本便能够达到理想拟合精度,从而实现对参数可靠性灵敏度的准确分析。提高L1均值后,可以使五连杆机构达到更高可靠性,而L2、L3、L4均值和各参数方差提高后,则会引起系统可靠性的下降。 展开更多
关键词 连杆机构 可靠性 支持向量机 粒子群优化 蒙特卡洛 预测精度
在线阅读 下载PDF
基于MFCC和PSO-SVM的雨量识别方法 被引量:1
15
作者 曾豫宁 行鸿彦 +2 位作者 侯天浩 王心怡 郑锦程 《电子测量与仪器学报》 北大核心 2025年第2期83-91,共9页
针对现有基于雨声信号及机器学习方法的雨量识别准确率较低等问题,通过分析雨声信号的频率特性,研究雨声信号的梅尔倒谱系数静态与动态特征,提出了一种梅尔倒谱系数(MFCC)与粒子群算法优化支持向量机(PSO-SVM)相结合的雨量识别方法。通... 针对现有基于雨声信号及机器学习方法的雨量识别准确率较低等问题,通过分析雨声信号的频率特性,研究雨声信号的梅尔倒谱系数静态与动态特征,提出了一种梅尔倒谱系数(MFCC)与粒子群算法优化支持向量机(PSO-SVM)相结合的雨量识别方法。通过提取雨声信号的MFCC静态与动态特征,利用随机森林算法内置的重要性评估机制进行特征选择,引入PSO算法对SVM的惩罚参数c以及核函数参数g进行微调,寻找最优参数组合,实现精准的雨量识别。实验结果表明,MFCC特征与其他特征相比能更有效的表征雨滴声纹信号特征,经过随机森林特征选择后的总体雨量识别准确率提高了5%,结合优化后的PSO-SVM进行雨量识别,其总体雨量识别准确率达到了91.1%,其中大雨、小雨的降雨识别准确率也均超过了90%,中雨的降雨识别准确率稍低,但也达到了86.5%。 展开更多
关键词 梅尔倒谱系数 粒子群优化算法 支持向量机 雨量识别
在线阅读 下载PDF
一种基于IPSO-SVM算法的网络入侵检测方法 被引量:24
16
作者 马占飞 陈虎年 +2 位作者 杨晋 李学宝 边琦 《计算机科学》 CSCD 北大核心 2018年第2期231-235,260,共6页
网络入侵检测一直是计算机网络安全领域的研究热点,当前网络面临着诸多的安全隐患。为了提高网络入侵检测的准确性,首先对粒子群优化(Particle Swarm Optimization,PSO)算法进行了改进,然后利用改进的PSO算法(IPSO算法)对支持向量机(Sup... 网络入侵检测一直是计算机网络安全领域的研究热点,当前网络面临着诸多的安全隐患。为了提高网络入侵检测的准确性,首先对粒子群优化(Particle Swarm Optimization,PSO)算法进行了改进,然后利用改进的PSO算法(IPSO算法)对支持向量机(Support Vector Machine,SVM)的参数进行了优化,并在此基础上设计了一种新型的基于IPSO-SVM算法的网络入侵检测方法。实验结果表明,相比于经典的SVM和PSO-SVM算法,IPSO-SVM算法不仅明显改善了网络训练的收敛速度,而且其网络入侵检测的正确率分别提高了7.78%和4.74%,误报率分别降低了3.37%和1.19%,漏报率分别降低了1.46%和0.66%。 展开更多
关键词 网络安全 入侵检测 粒子群优化算法 最优参数 支持向量机
在线阅读 下载PDF
考虑簧下信息的道路过程噪声自适应路面不平度估计研究
17
作者 邹函桐 夏小均 +3 位作者 张红 张志飞 陈浩 贺岩松 《振动与冲击》 北大核心 2025年第14期283-292,共10页
准确获取路面不平度信息对于智能悬架控制至关重要,直接影响汽车动力学性能和舒适性。因此,本文旨在提升路面不平度估计精度,基于4自由度模型,将车身垂向振动、俯仰振动和簧下振动信息作为观测量,使用卡尔曼滤波算法搭建路面不平度估计... 准确获取路面不平度信息对于智能悬架控制至关重要,直接影响汽车动力学性能和舒适性。因此,本文旨在提升路面不平度估计精度,基于4自由度模型,将车身垂向振动、俯仰振动和簧下振动信息作为观测量,使用卡尔曼滤波算法搭建路面不平度估计观测器,同时利用车身垂向加速度信息构建粒子群-支持向量机模型以实现路面等级分类,并基于路面等级设计道路过程噪声协方差矩阵自适应更新算法,提出考虑簧下信息的过程噪声自适应路面不平度估计算法。仿真结果表明,在随机路面和冲击路面下,所提算法相对于常规增广卡尔曼滤波算法在实时路面不平度估计精度上取得一定提升。 展开更多
关键词 增广卡尔曼观测器 粒子群算法优化支持向量机 路面等级识别 过程噪声自适应
在线阅读 下载PDF
基于VMD和PSO-SVM的非侵入式负荷识别方法
18
作者 杨锐 邹晓松 +3 位作者 熊炜 袁旭峰 郑华俊 刘斌 《电测与仪表》 北大核心 2025年第5期111-119,共9页
非侵入式负荷监测是智能用电的未来发展趋势,其中负荷的分解与辨识是实现该技术的重要环节。鉴于变分模态分解(variational mode decomposition,VMD)在信号处理方面的优势,提出一种基于VMD-FastICA(variational mode decomposition and ... 非侵入式负荷监测是智能用电的未来发展趋势,其中负荷的分解与辨识是实现该技术的重要环节。鉴于变分模态分解(variational mode decomposition,VMD)在信号处理方面的优势,提出一种基于VMD-FastICA(variational mode decomposition and fast independent component analysis)和VMD-Entropy-PSOSVM(variational mode decamposition-entropy-particle swanm optimization fo optimizing support vector machines)的负荷识别算法。该方法利用VMD对总负荷功率信号进行分解得到多个模态分量(intrinsic mode functions,IMF),再依据峭度准则和奇异值分解对分解后的模态分量重构,将单通道盲源分离虚拟成多通道盲源分离,输入快速独立分量分析(fast independent component analysis,FastICA)进行负荷信号分离,求取分解负荷波形模态分量的能量与能量熵。构建多维特征矩阵输入建立粒子群算法优化支持向量机(particle swarm optimization for optimizing support vector machines,PSO-SVM),进行负荷的分类辨识。采用开源数据集(reduced electricity dataset,REDD)对实验算法进行仿真,与其他算法相比,验证算法在分解和识别上都具有较好的效果。 展开更多
关键词 非侵入式负荷监测 单通道盲源分解 变分模态分解 能量熵 粒子群算法优化支持向量机
在线阅读 下载PDF
一种基于PSO_LSSVM的航空发动机磨损趋势组合预测模型研究
19
作者 苗慧慧 马佳丽 +4 位作者 曹桂松 李爱 曹玮 何超 陈果 《中国工程机械学报》 北大核心 2025年第2期238-243,共6页
通过对航空发动机的磨损趋势进行预测,能够有效地对航空发动机磨损状态进行监测。在反映发动机磨损状态的有效观测数据中,油液分析数据能够间接反映航空发动机整体磨损趋势。因此,通过建立基于油样分析数据的趋势预测模型,从而实现发动... 通过对航空发动机的磨损趋势进行预测,能够有效地对航空发动机磨损状态进行监测。在反映发动机磨损状态的有效观测数据中,油液分析数据能够间接反映航空发动机整体磨损趋势。因此,通过建立基于油样分析数据的趋势预测模型,从而实现发动机的磨损趋势预测。但是,目前应用于航空发动机趋势预测的模型中主要以单一预测模型为主,组合预测模型也仅是一般的线性组合,预测效果不佳。为此提出了一种基于支持向量机的非线性变权重组合预测模型,通过粒子群算法实现参数优化,油样分析数据则通过全寿命滑油系统轴承疲劳试验,间隔固定时间收集滑油样品进行性能分析得到。对其中的光谱分析数据进行组合预测分析,通过对比组合预测结果与单一预测模型的预测结果,预测精度均超过单一预测模型的预测精度,充分验证了所提组合预测模型的优越性和有效性。 展开更多
关键词 趋势预测 最小二乘支持向量机 航空发动机 粒子群优化算法
在线阅读 下载PDF
基于PSO-SVM模型的边坡稳定性预测研究
20
作者 徐智超 陈匀杉 +2 位作者 邓超 丁乐 计静 《安全与环境学报》 北大核心 2025年第9期3531-3537,共7页
为准确且高效地预测边坡稳定性,研究提出了一种基于粒子群优化支持向量机(Particle Swarm Optimization algorithm optimized Support Vector Machine,PSO-SVM)的边坡稳定性预测模型。该模型首先采用主成分分析法对特征数据进行降维,以... 为准确且高效地预测边坡稳定性,研究提出了一种基于粒子群优化支持向量机(Particle Swarm Optimization algorithm optimized Support Vector Machine,PSO-SVM)的边坡稳定性预测模型。该模型首先采用主成分分析法对特征数据进行降维,以提高模型的学习效率;其次,采用粒子群优化(Particle Swarm Optimization,PSO)算法优化支持向量机(Support Vector Machine,SVM)的超参数,以提高模型的预测精度与泛化能力。为验证模型有效性与可靠性,选取反向传播神经网络(Back Propagation Neural Network,BPNN)、随机森林(Random Forest,RF)与未优化的SVM作为对比试验模型,并将准确率、精确率、召回率与F_(1-score)作为各模型预测性能的评价指标,以对各模型的预测性能进行评估。研究结果显示,PSO-SVM模型在测试集的准确率、精确率、召回率与F_(1-score)分别为0.958、0.917、1和0.957,均为各模型的最高值,展现出最佳的预测性能与泛化能力。研究为边坡稳定性评估提供了有效参考,具有重要的工程意义。 展开更多
关键词 安全工程 边坡稳定性 主成分分析法 粒子群优化算法 支持向量机
在线阅读 下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部