期刊文献+
共找到522篇文章
< 1 2 27 >
每页显示 20 50 100
结合注意力机制和IPSO的石油化工过程变量预测方法
1
作者 杨琛 周宁 孔立新 《安全与环境学报》 北大核心 2025年第6期2179-2188,共10页
在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional... 在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional Long Short-Term Memory, BiLSTM)神经网络的预测模型,并特别引入注意力机制,以强化关键信息的表达。以北京市某化工企业初馏塔为研究对象,首先利用皮尔逊相关系数、最大信息系数筛选高相关性变量;同时,利用极端梯度提升(eXtreme Gradient Boosting, XGBoost)树构造关键衍生特征,增强输入变量的有效性。其次,采用BiLSTM建模,捕捉关键变量前后时序依赖性;同时结合IPSO优化隐藏层节点数、学习率、L2正则化系数和学习率调整因子,以获得最优超参数组合,实现对初馏塔换热终温的精确预测。试验结果表明,所提出的模型具有较强泛化能力,在预测准确率和稳定性方面均优于传统模型,不仅能有效避免陷入局部最优解,还能精准捕捉关键变量的变化趋势,可为实现石油化工过程关键变量的预测提供参考。 展开更多
关键词 安全工程 双向长短期记忆神经网络 注意力机制 极端梯度提升树 改进粒子群优化算法
在线阅读 下载PDF
基于IPSO-VMD联合小波阈值的超低空磁异常信号去噪方法
2
作者 杨帆 徐春雨 李肃义 《电子测量与仪器学报》 北大核心 2025年第6期204-211,共8页
变分模态分解(VMD)方法在超低空磁异常信号去噪中具有较好的模态分解效果,然而在实际探测中需要依赖人工设定惩罚因子和模态分解参数,且磁异常信号微弱、环境噪声复杂。针对上述问题,提出了一种改进的粒子群优化变分模态分解(IPSO-VMD)... 变分模态分解(VMD)方法在超低空磁异常信号去噪中具有较好的模态分解效果,然而在实际探测中需要依赖人工设定惩罚因子和模态分解参数,且磁异常信号微弱、环境噪声复杂。针对上述问题,提出了一种改进的粒子群优化变分模态分解(IPSO-VMD)联合小波阈值的去噪方法。首先,通过引入自适应惯性权重和学习因子策略,利用排列熵作为自适应函数,实现了对上述参数自适应。之后,采用最优参数组合对信号进行分解,并对异常分量应用小波阈值去噪处理。最终,将信号重构并获得去噪后的信号。仿真实验结果表明,该方法相比其他方法将信噪比提升了约9.44 dB,相关系数达到约0.74,获得了良好的去噪效果。通过野外实验表明,去噪后的实测信号磁异常位置明显,有效降低了环境噪声对信号的干扰,显示出在野外超低空磁目标勘探中的应用潜力。 展开更多
关键词 超低空磁异常探测 改进粒子群优化(ipso) 变分模态分解(VMD) 参数自适应 小波阈值
在线阅读 下载PDF
Study of Direction Probability and Algorithm of Improved Marriage in Honey Bees Optimization for Weapon Network System 被引量:2
3
作者 杨晨光 涂序彦 陈杰 《Defence Technology(防务技术)》 SCIE EI CAS 2009年第2期152-157,共6页
To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damagin... To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damaging probability that changes with the defending angle,the efficiency of the whole weapon network system can be subtly described.With such method,we can avoid the inconformity of the description obtained from the traditional index systems.Three new indexes are also proposed,i.e.join index,overlap index and cover index,which help manage the relationship among several sub-weapon-networks.By normalizing the computation results with the Sigmoid function,the matching problem between the optimization algorithm and indexes is well settled.Also,the algorithm of improved marriage in honey bees optimization that proposed in our previous work is applied to optimize the embattlement problem.Simulation is carried out to show the efficiency of the proposed indexes and the optimization algorithm. 展开更多
关键词 网络系统 优化问题 破坏概率 算法改进 核武器 蜜蜂 婚姻 SIGMOID函数
在线阅读 下载PDF
基于IPSO⁃BP的消防通信指挥系统效能评价
4
作者 于振江 《中国安全科学学报》 北大核心 2025年第9期1-7,共7页
为实现消防通信指挥系统的现状研判与迭代升级的量化支撑,基于消防通信指挥系统设计规范,从业务支撑能力、数据服务能力、通信保障能力3个方面构建支队级消防指挥通信系统4级效能评价指标体系;在反向传播(BP)神经网络算法的基础上,通过... 为实现消防通信指挥系统的现状研判与迭代升级的量化支撑,基于消防通信指挥系统设计规范,从业务支撑能力、数据服务能力、通信保障能力3个方面构建支队级消防指挥通信系统4级效能评价指标体系;在反向传播(BP)神经网络算法的基础上,通过改进粒子群优化(IPSO)算法优化参数,提出基于IPSO-BP的系统效能评价方法;采用专家打分与层次分析法(AHP)结合的方式获取样本数据,经主成分分析(PCA)方法降维后,分别基于BP神经网络、PSO-BP神经网络、IPSO-BP神经网络这3个模型开展仿真对比。结果表明:IPSO-BP神经网络模型的收敛速度最快,其均方误差相比于BP神经网络模型降低了75.71%,相较于PSO-BP神经网络模型降低了45.96%,为三者中的最小值;IPSO-BP模型能够合理精准地评价支队级消防通信指挥系统效能,具有一定的普适性。 展开更多
关键词 消防通信指挥系统 效能评价 反向传播(BP)神经网络 改进粒子群优化(ipso) 指标体系
在线阅读 下载PDF
基于IPSO-LSTM的井下动目标位置预测实验研究 被引量:4
5
作者 王红尧 房彦旭 +3 位作者 吴钰晶 吉正平 赫海全 鲜旭红 《矿业科学学报》 CSCD 北大核心 2024年第3期393-403,共11页
提升井下人员定位精度能够加强矿山安全监测,最大程度保障井下人员的生命安全。针对现有测距类算法受现场环境影响致使定位精度不足的问题,提出一种基于IPSO-LSTM的定位模型,应用于井下动目标的位置预测。采用LSTM构建指纹定位模型,通过... 提升井下人员定位精度能够加强矿山安全监测,最大程度保障井下人员的生命安全。针对现有测距类算法受现场环境影响致使定位精度不足的问题,提出一种基于IPSO-LSTM的定位模型,应用于井下动目标的位置预测。采用LSTM构建指纹定位模型,通过UWB无线模块采集距离信息以构建距离-位置指纹关系数据库,利用数据库对PSO-LSTM模型进行训练,最后将训练好的模型进行目标轨迹预测。为比较不同改进策略对PSO的提升效果,对比了混沌映射随机初始化种群位置、非线性惯性权重递减、非对称优化学习因子和适应度函数优化4种改进策略,实验证明改进的PSO优化算法收敛速度快、鲁棒性好。为验证IPSO-LSTM的定位效果,以平均定位误差作为评价指标,将IPSO-LSTM模型与Chan算法、PSO-LSTM模型、LSTM神经网络、SSA-LSTM模型和GWO-LSTM进行对比,结果显示,IPSO-LSTM定位模型的平均定位误差为30 mm,相对传统Chan算法、LSTM、PSO-LSTM模型分别提升了76%、49%、24%。为降低局部误差偏大的现象,采用中值滤波对输入信息处理,进一步提升了定位精度。研究对进一步提高现有井下动目标定位系统的精度和稳定性具有重要意义和参考价值。 展开更多
关键词 井下动目标 改进的粒子群优化算法 ipso-LSTM模型 平均定位误差
在线阅读 下载PDF
基于IPSO-BP的船舶航迹预测研究
6
作者 白响恩 陈诺 徐笑锋 《包装工程》 CAS 北大核心 2024年第9期201-209,共9页
目的面对复杂的海上交通及密集的物流交通流,及时有效地对船舶航迹进行跟踪预测显得尤为重要,针对传统船舶航迹预测方法精确度低且效率低下的问题,提出一种改进方法。方法在船舶自动识别系统(Automatic Identification System,AIS)数据... 目的面对复杂的海上交通及密集的物流交通流,及时有效地对船舶航迹进行跟踪预测显得尤为重要,针对传统船舶航迹预测方法精确度低且效率低下的问题,提出一种改进方法。方法在船舶自动识别系统(Automatic Identification System,AIS)数据的基础上,建立改进粒子群算法(IPSO)与BP神经网络相结合的船舶轨迹预测模型,利用船舶历史航行轨迹数据,实现对未来船舶运动的预测。选取宁波舟山港的船舶历史轨迹数据进行实验,并将IPSO-BP模型的实验结果与其他模型进行比较。结果不同模型航迹预测对比结果表明,IPSO-BP模型的性能较好,其预测精度较高,适用于船舶轨迹预测。结论使用IPSO-BP模型能够更加精准地预测船舶航迹,在船舶危险预警、船舶异常监测等方面具有重要的指导作用。 展开更多
关键词 AIS数据 航迹预测 改进粒子群算法 BP神经网络
在线阅读 下载PDF
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
7
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
在线阅读 下载PDF
基于VMD-LSTM-IPSO-GRU的电力负荷预测 被引量:6
8
作者 肖威 方娜 邓心 《科学技术与工程》 北大核心 2024年第16期6734-6741,共8页
为了挖掘电力负荷数据中的潜藏信息,提高短期负荷预测的精度,针对电力负荷强非线性、非平稳性等特点,提出一种基于变分模态分解(variational mode decomposition,VMD)、长短时记忆神经网络(long-term and short-term memory network,LS... 为了挖掘电力负荷数据中的潜藏信息,提高短期负荷预测的精度,针对电力负荷强非线性、非平稳性等特点,提出一种基于变分模态分解(variational mode decomposition,VMD)、长短时记忆神经网络(long-term and short-term memory network,LSTM)、改进的粒子群算法(improve particle swarm optimization,IPSO)和门控循环单元(gated recurrent unit neural network,GRU)的混合预测模型。首先,使用相关性分析确定输入因素,再将负荷数据运用VMD算法结合样本熵分解为一系列本征模态分量(intrinsic mode fuction,IMF)和残差量,进而合理地确定分解层数和惩罚因子;其次,根据过零率将这些量划分为低频和高频,低频分量使用LSTM网络,高频分量利用IPSO-GRU网络分别进行预测;最后,将预测结果重构得到电力负荷的最终结果。仿真结果表明:相对于其他模型,所提混合模型可有效的提取模态特征,具有更高的预测精度。 展开更多
关键词 短期负荷预测 变分模态分解(VMD) 长短时记忆神经网络(LSTM) 门控循环单元(GRU) 改进的粒子群优化算法(ipso)
在线阅读 下载PDF
基于IPSO-DBSCAN的抽水蓄能机组状态监测数据异常检测方法 被引量:2
9
作者 张金鹏 张孝远 《水电能源科学》 北大核心 2024年第2期152-156,共5页
抽水蓄能机组状态监测数据受采集设备故障、通信设备异常等因素影响,数据集中存在部分异常数据,对后续机组健康状态评估及预测造成不利影响。为此,提出了一种基于改进粒子群优化算法和DBSCAN密度聚类算法的机组异常数据检测模型,模型针... 抽水蓄能机组状态监测数据受采集设备故障、通信设备异常等因素影响,数据集中存在部分异常数据,对后续机组健康状态评估及预测造成不利影响。为此,提出了一种基于改进粒子群优化算法和DBSCAN密度聚类算法的机组异常数据检测模型,模型针对粒子群算法易陷入局部最优解的问题对算法进行改进,之后引入轮廓系数作为适应度函数对DBSCAN的参数进行寻优,最后以相关系数评价异常值剔除的效果。对国内某抽水蓄能机组2020年2月初~3月末实测导叶开度、有功功率及下机架振动数据的实例分析结果表明,所提方法能够有效检测出机组振动监测异常数据,剔除异常值后的数据相关系数得到提高,可为后续机组健康状态评估与预测奠定数据基础。 展开更多
关键词 抽水蓄能 异常值检测 改进粒子群优化算法 DBSCAN
在线阅读 下载PDF
大坝运行安全在线监控IPSO-LSTM模型研究 被引量:1
10
作者 戴霈霖 李艳玲 周子玉 《人民长江》 北大核心 2024年第12期229-236,共8页
构建合理在线监控模型是实时掌控大坝安全性态的重要保障。针对LSTM模型受多参数组合影响、最优参数泛化能力弱、人工选取参数难的问题,深入分析了学习率、分块尺寸、最大迭代次数和隐藏层单元数等关键参数对大坝安全在线监控模型精度... 构建合理在线监控模型是实时掌控大坝安全性态的重要保障。针对LSTM模型受多参数组合影响、最优参数泛化能力弱、人工选取参数难的问题,深入分析了学习率、分块尺寸、最大迭代次数和隐藏层单元数等关键参数对大坝安全在线监控模型精度的影响规律,提出了融合非线性惯性权重、收缩因子及柯西扰动项的粒子群优化改进算法(IPSO),并与LSTM模型耦合构建了针对大坝安全监控的IPSO-LSTM模型。工程校验表明:该模型能自动搜寻最优参数、精度高、鲁棒性强,适用于不同类型、不同长度的大坝安全监测数据序列,相对人工定参的LSTM模型误差至少能降低30%。相关经验可为大坝运行安全在线监控提供技术支持。 展开更多
关键词 大坝安全 监控模型 粒子群优化改进算法(ipso) 长短时神经网络(LSTM) 自动寻优
在线阅读 下载PDF
基于mRMR-IPSO的短期负荷预测双阶段特征选择 被引量:3
11
作者 焦龄霄 周凯 +4 位作者 张子熙 韩飞 时伟君 洪叶 罗朝丰 《重庆大学学报》 CAS CSCD 北大核心 2024年第5期98-109,共12页
电力负荷具有时空多变的特性,受众多因素的影响,在短期负荷预测中较多的输入特征会造成维度灾难,导致模型预测性能不佳,因此选择合理的输入特征集至关重要。文章提出一种新的短期负荷预测特征选择方法——mRMR-IPSO双阶段法。利用最大... 电力负荷具有时空多变的特性,受众多因素的影响,在短期负荷预测中较多的输入特征会造成维度灾难,导致模型预测性能不佳,因此选择合理的输入特征集至关重要。文章提出一种新的短期负荷预测特征选择方法——mRMR-IPSO双阶段法。利用最大相关最小冗余(maxrelevance and min-redundancy,mRMR)判据对原始特征进行排序,考虑输入特征与输出特征之间相关性和输入特征间冗余性,筛选掉一些排序靠后的特征,初选出对预测效果影响显著的特征子集;采用基于改进的粒子群优化算法(improved particle swarm optimization,IPSO)的搜索策略,以LightGBM模型的预测精度为适应度函数,对初选特征子集进行精选,得到最优特征子集。算例结果表明,所提方法能在对原始特征集大幅降维的情况下提升预测精度。 展开更多
关键词 特征选择 负荷预测 最大相关最小冗余 改进的粒子群优化算法 LightGBM
在线阅读 下载PDF
遮光条件下基于IPSO-FLC的光伏MPPT控制 被引量:1
12
作者 樊立萍 姚凌颖 《现代电子技术》 北大核心 2024年第22期77-82,共6页
光伏阵列在部分遮光条件下的P-U特性曲线会呈现多峰问题,致使跟踪算法变得更加复杂,而传统的MPPT算法可能会陷入局部最大功率点,导致对全局最大功率点的跟踪无法实现。为此,提出一种改进粒子群算法优化模糊控制器,来实现遮光条件下的光... 光伏阵列在部分遮光条件下的P-U特性曲线会呈现多峰问题,致使跟踪算法变得更加复杂,而传统的MPPT算法可能会陷入局部最大功率点,导致对全局最大功率点的跟踪无法实现。为此,提出一种改进粒子群算法优化模糊控制器,来实现遮光条件下的光伏阵列最大功率点跟踪。在Matlab/Simulink环境下,对光伏系统和所提出的MPPT算法进行仿真,同时与扰动观测法等传统MPPT算法进行比较。仿真结果表明,所提方法能够有效地跟踪光伏阵列的最大功率点,并且具有较快的响应速度。 展开更多
关键词 光伏阵列 MPPT 部分遮光 模糊控制器 改进粒子群算法 扰动观测法
在线阅读 下载PDF
基于IPSO-SVM的动态汽车衡故障诊断方法研究 被引量:1
13
作者 黄庆程 《机电工程》 CAS 北大核心 2024年第12期2310-2319,共10页
针对服役状态下,不易对轴重式动态汽车衡的灵敏度漂移等故障进行在线检测这一问题,提出了一种特征降维下结合莱维飞行改进粒子群算法优化支持向量机(IPSO-SVM)模型,以及信号特征提取与降维的动态汽车衡故障诊断方法。首先,提取了输出信... 针对服役状态下,不易对轴重式动态汽车衡的灵敏度漂移等故障进行在线检测这一问题,提出了一种特征降维下结合莱维飞行改进粒子群算法优化支持向量机(IPSO-SVM)模型,以及信号特征提取与降维的动态汽车衡故障诊断方法。首先,提取了输出信号的时域与频域特征,利用核主成分分析(KPCA),将非线性映射函数输入空间变换到高维空间,实现对特征向量的降维与筛选目的;然后,利用了莱维飞行改进粒子群优化算法(PSO)的寻优能力,并采用改进后的算法对支持向量机(SVM)进行了优化,得到了最优的参数组合,以此构建了全局最优的IPSO-SVM诊断模型;最后,采用建立的诊断模型,对不同车重、不同车速、不同轴型载荷工况下的动态汽车衡进行了故障诊断验证。研究结果表明:采用该动态汽车衡故障诊断方法,其诊断准确率可达98%,证实了引入莱维飞行后的改进粒子群算法可显著改进优化的效率和效果。相比现有诊断方法,IPSO-SVM诊断模型可有效解决PSO算法易陷入局部最优解的问题,准确率得到了较大提升,可实现对汽车衡系统动态故障工况下的全类型高精度诊断。 展开更多
关键词 质量计量仪器 故障诊断模型 莱维飞行 信号特征提取 信号特征降维 支持向量机 改进粒子群算法优化支持向量机 核主成分分析
在线阅读 下载PDF
基于多目标粒子群-遗传混合算法的高速球轴承优化设计方法 被引量:1
14
作者 杨文 叶帅 +2 位作者 姚齐水 余江鸿 胡美娟 《机电工程》 北大核心 2025年第2期226-236,共11页
目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出... 目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出了一种基于多目标粒子群-遗传混合算法的球轴承结构优化设计方法。首先,建立了以轴承最大额定动载荷、最大额定静载荷和最小摩擦生热率为目标函数的优化数学模型;然后,利用多目标粒子群算法(MOPSO)的全局搜索能力和改进非支配排序遗传算法(NSGA-II)的进化操作,引入粒子寻优速度控制策略、交叉变异策略和罚函数机制,解决了带约束优化问题求解和局部最优问题,增强了算法的收敛速度和解集探索能力;最后,在特定工况下对轴承结构进行了优化,采用层次分析法,从Pareto前沿中优选了内外圈沟曲率半径系数、滚动体数量、滚动体直径和节圆直径的最优值。研究结果表明:在16 kN径向载荷、15 000 r/min的高转速工况下,以新能源汽车电驱系统6206型深沟球轴承为例进行了分析,结果显示,优化后的轴承接触应力下降了21.2%,应变下降了25.6%,摩擦生热下降了16.7%,体现了该方法在收敛性能、寻优速度等方面的优势。该优化设计方法可为球轴承的工程应用提供有价值的参考。 展开更多
关键词 高速球轴承结构设计 多目标粒子群-遗传混合算法 改进非支配排序遗传算法 优化设计目标函数 层次分析法 6206型深沟球轴承
在线阅读 下载PDF
基于优化VMD和BiLSTM的短期负荷预测 被引量:3
15
作者 谢国民 陆子俊 《电力系统及其自动化学报》 北大核心 2025年第4期30-39,共10页
针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集... 针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集成预测模型。首先,对原始电力负荷数据进行变分模态分解,降低数据复杂度,在变分模态分解中,引入白鲸算法对分解层数和惩罚因子寻优,优化分解效果。其次,采用Logistic混沌映射、螺旋搜索和麻雀思想引入的多策略改进方法,增加原始沙猫群优化算法的种群多样性,提升收敛精度和全局搜索能力,并用改进后的算法对BiLSTM中的超参数进行优化。然后,结合AdaBoost集成学习算法构建ISCSO-Bi LSTM-AdaBoost预测模型,将分解后的各分量输入模型预测。最后将各预测值叠加,得到最终预测结果。实验结果表明,本文建立的组合模型预测精度高,稳定性强。 展开更多
关键词 电力负荷预测 变分模态分解 双向长短期记忆网络 改进沙猫群优化算法 集成学习算法
在线阅读 下载PDF
改进PSO-PH-RRT^(*)算法在智能车路径规划中的应用 被引量:1
16
作者 蒋启龙 许健 《东北大学学报(自然科学版)》 北大核心 2025年第3期12-19,共8页
在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(... 在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(*))算法.该算法在基于均匀概率的快速拓展随机树(PHRRT^(*))算法的基础上,利用粒子群算法更新方向概率作为随机树节点的速度方向,从而改善了节点的位置更新策略,并将节点到目标向量的距离和轨迹平滑度作为粒子群算法的适应度函数.最后在多种障碍环境下进行仿真.结果表明,PSO-PH-RRT^(*)算法能大大减少迭代时间成本,同时改善路径长度和平滑度. 展开更多
关键词 路径规划 RRT算法 改进粒子群优化算法 目标向量 代价函数 适应度函数
在线阅读 下载PDF
基于系统辨识和改进多目标粒子群算法的水泥原料配比优化
17
作者 秦红斌 陈龙 +1 位作者 唐红涛 张峰 《控制工程》 北大核心 2025年第7期1260-1270,共11页
为了得到高品质、低成本的水泥生料,对原料配比优化问题进行了研究。首先,针对原料氧化物含量波动和立磨工况变化的问题,提出了原料氧化物含量等效值的概念,将其作为水泥生料氧化物含量和原料配比之间的关系参数,并利用系统辨识方法对... 为了得到高品质、低成本的水泥生料,对原料配比优化问题进行了研究。首先,针对原料氧化物含量波动和立磨工况变化的问题,提出了原料氧化物含量等效值的概念,将其作为水泥生料氧化物含量和原料配比之间的关系参数,并利用系统辨识方法对其进行求解;然后,建立了以最小化原料成本和原料配比调整量为目标的原料配比多目标优化模型,将各项生料质量控制指标加入约束条件以保证解的可行性,并提出了改进多目标粒子群优化算法对模型进行求解。实验结果表明,相比于非支配排序遗传算法II(non-dominated sorting genetic algorithm II,NSGA-II)和人工配比,采用所提算法优化原料配比,不仅将各项生料质量控制指标较好地控制在目标范围内,还降低了原料成本。 展开更多
关键词 水泥原料配比 原料氧化物含量等效值 系统辨识 改进多目标粒子群优化算法
在线阅读 下载PDF
四轮毂电机驱动汽车的差速转向控制研究
18
作者 屈小贞 张昊 +1 位作者 李刚 刘晏 《现代制造工程》 北大核心 2025年第9期90-98,共9页
为提高四轮毂电机驱动汽车在高速转弯时的转向稳定性,准确协调各驱动轮之间的差速控制,设计了一种基于驱动力矩分配的差速转向控制策略。差速转向控制策略采用分层控制架构,上层控制器基于滑模变结构控制算法计算汽车所需的总驱动力矩,... 为提高四轮毂电机驱动汽车在高速转弯时的转向稳定性,准确协调各驱动轮之间的差速控制,设计了一种基于驱动力矩分配的差速转向控制策略。差速转向控制策略采用分层控制架构,上层控制器基于滑模变结构控制算法计算汽车所需的总驱动力矩,基于改进粒子群优化算法优化模糊全局快速终端滑模控制,计算汽车差速转向所需的附加横摆力矩;下层控制器则基于二次规划算法将所计算的总驱动力矩和附加横摆力矩进行优化分配,进而得到各个车轮的驱动力矩。通过Carsim/Simulink软件进行联合仿真对所设计的控制策略进行验证,结果表明,相较于传统控制策略,差速转向控制策略能更有效地降低汽车在高速转弯时的横摆角速度和质心侧偏角峰值响应。 展开更多
关键词 四轮毂电机 差速转向控制 改进粒子群优化算法 二次规划
在线阅读 下载PDF
基于语义相似度与改进PSO算法的云制造能力需求模型与匹配策略研究
19
作者 李晓波 郭银章 《现代制造工程》 北大核心 2025年第6期30-44,共15页
针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能... 针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能力需求模型的基础上,采用领域本体树的概念提出了概念相似度、句子相似度和数值相似度的计算方法,实现了基于语义相似度的云制造能力需求智能化服务搜索;然后,针对云制造能力的服务组合问题,在分析了制造能力服务质量(Quality of Service,QoS)属性的基础上,采用层次分析法(Analytic Hierarchy Process,AHP)将各个属性进行归一化求和,给出了一种基于改进PSO算法的服务组合方法;最后,通过实验对比发现所提出的方法优于现有方法并实现了云制造能力需求智能匹配原型系统。 展开更多
关键词 云制造能力 任务需求 搜索匹配 服务组合 语义相似度 改进粒子群优化算法
在线阅读 下载PDF
自适应时域MPC拖拉机路径跟踪控制研究
20
作者 夏长高 田梦宇 《重庆理工大学学报(自然科学)》 北大核心 2025年第8期52-59,共8页
针对固定参数模型预测控制(model predictive control,MPC)在路径跟踪控制器中跟踪误差大、难以满足精准农业作业需求的情况,以及传统模型预测控制中时域参数固定的局限,提出一种时域参数自适应调整的控制策略。建立拖拉机动力学模型,在... 针对固定参数模型预测控制(model predictive control,MPC)在路径跟踪控制器中跟踪误差大、难以满足精准农业作业需求的情况,以及传统模型预测控制中时域参数固定的局限,提出一种时域参数自适应调整的控制策略。建立拖拉机动力学模型,在MPC算法的基础上,引入改进粒子群优化算法,对时域参数进行自适应调整;搭建MPC轨迹跟踪仿真框架,验证控制器的可行性。仿真结果表明:相比于固定时域MPC控制器,所提出的自适应时域MPC控制器的轨迹跟踪,横向误差绝对均值可降低22%~28%,提高了跟踪精度。 展开更多
关键词 拖拉机 路径跟踪 模型预测控制 改进粒子群优化算法
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部