To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solve...To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively.展开更多
Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A...Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A special multiple-objective genetic algorithm,namely the Nondominated Sorting Genetic AlgorithmⅡ(NSGAⅡ),is used to design responsive orbits.This algorithm has considered the conflicting metrics of orbits to achieve the optimal solution,including the orbital elements and launch programs of responsive vehicles.Low-Earth fast access orbits and low-Earth repeat coverage orbits,two subtypes of responsive orbits,can be designed using NSGAI under given metric tradeoffs,number of vehicles,and launch mode.By selecting the optimal solution from the obtained Pareto fronts,a designer can process the metric tradeoffs conveniently in orbit design.Recurring to the flexibility of the algorithm,the NSGAI promotes the responsive orbit design further.展开更多
基金Supported by the National"Thirteenth Five-year Plan"National Key Program(2016YFD0701301)the Heilongjiang Provincial Achievement Transformation Fund Project(NB08B-011)。
文摘To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively.
文摘在考虑工人技能学习差异的基础上,为解决多工人协作柔性车间调度问题,提出了基于稀疏邻域带精英策略的快速非支配排序遗传算法(Non-dominated Sorting Genetic AlgorithmⅡ,NSGA-Ⅱ)的调度方法。对考虑技能学习差异的多工人协作柔性车间调度问题进行了描述,以车间工人学习能力为背景改进了DeJong学习模型,并建立了多工人协作柔性车间调度的多目标优化模型。在NSGA-Ⅱ基础上,引入了邻域稀疏度的选择方法,有效保留了信息丰富和多样化的染色体,并将稀疏邻域NSGA-Ⅱ应用于柔性车间调度问题求解。经实验验证,稀疏邻域NSGA-Ⅱ所得Pareto解集质量高于标准NSGA-Ⅱ和自适应多目标进化算法(Multiobjective Evolutionary Algorithm Based on Decomposition,MOEA/D),最短调度方案的完工时间为127.1 min,该方案满足逻辑和时间等约束。实验结果验证了稀疏邻域NSGA-Ⅱ在柔性车间调度中的优越性。
文摘Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A special multiple-objective genetic algorithm,namely the Nondominated Sorting Genetic AlgorithmⅡ(NSGAⅡ),is used to design responsive orbits.This algorithm has considered the conflicting metrics of orbits to achieve the optimal solution,including the orbital elements and launch programs of responsive vehicles.Low-Earth fast access orbits and low-Earth repeat coverage orbits,two subtypes of responsive orbits,can be designed using NSGAI under given metric tradeoffs,number of vehicles,and launch mode.By selecting the optimal solution from the obtained Pareto fronts,a designer can process the metric tradeoffs conveniently in orbit design.Recurring to the flexibility of the algorithm,the NSGAI promotes the responsive orbit design further.