变电站室内无人机巡检可有效降低人工巡检作业强度。由于飞行精度要求高,搭载能力有限,仅依靠无人机搭载摄像头与惯性测量单元(inertial measurement unit, IMU)数据融合确定位姿无法满足精度要求,为此,提出基于变电站室内已有固定摄像...变电站室内无人机巡检可有效降低人工巡检作业强度。由于飞行精度要求高,搭载能力有限,仅依靠无人机搭载摄像头与惯性测量单元(inertial measurement unit, IMU)数据融合确定位姿无法满足精度要求,为此,提出基于变电站室内已有固定摄像头的泛在物联的多视觉-惯导融合框架,针对室内光线情况对无人机摄像头图像进行强化,并与IMU数据结合得到初步的无人机位置数据。进一步通过在无人机上布设二维码(quick response code,QR码),应用改进后的PnP(perspective-n-point)算法优化无人机位姿数据。飞行结束后在无人机机巢对IMU的累计误差进行校验。实验证明:该方法布设与维护的工作量小,相较仅依靠搭载摄像头与IMU数据融合算法,飞行精度有较大提高,可满足变电站内无人机巡检作业的需要。展开更多
L波段数字航空通信系统(L band digital aeronautical communication system,LDACS)是未来航空宽带通信重要的基础设施之一,针对LDACS信号容易受到相邻波道大功率测距仪(distance measuring equipment,DME)信号干扰的问题,提出了联合正...L波段数字航空通信系统(L band digital aeronautical communication system,LDACS)是未来航空宽带通信重要的基础设施之一,针对LDACS信号容易受到相邻波道大功率测距仪(distance measuring equipment,DME)信号干扰的问题,提出了联合正交投影干扰抑制与单快拍稀疏分解的波达方向(direction of arrival,DOA)估计方法。通过子空间投影抑制DME干扰,然后使用单快拍数据构建伪协方差矩阵,对伪协方差矩阵求高阶幂,之后进行奇异值分解,并利用约束条件求解稀疏解得到期望信号来向的估计值。所提方法使用高阶伪协方差矩阵降低了噪声影响,仅用单快拍就可以准确估计LDACS信号的入射方向。仿真结果表明,改进单快拍高级幂(improved single snapshot high order power,ISS-HOP)L1-SVD算法的估计精度优于ISS-HOP-MUSIC算法。该方法可以有效抑制DME干扰,提高OFDM接收机性能。展开更多
电力系统状态估计(power system state estimation,PSSE)在现代智能电网的稳定运行中起着至关重要的作用,但它也容易遭受网络攻击。虚假数据注入攻击(false data injection attacks,FDIA)是最常见的网络攻击方式之一,它可以篡改量测数...电力系统状态估计(power system state estimation,PSSE)在现代智能电网的稳定运行中起着至关重要的作用,但它也容易遭受网络攻击。虚假数据注入攻击(false data injection attacks,FDIA)是最常见的网络攻击方式之一,它可以篡改量测数据并绕过不良数据检测(bad data detection,BDD)机制,从而导致不正确的状态估计结果。文中提出一种基于数据驱动的针对PSSE的FDIA防御框架,该框架包含异常检测子框架和数据恢复子框架。异常检测部分采用改进的图卷积网络(improved graph convolutional network,IGCN)模型,该模型采用动态的边缘条件滤波器作用于图结构中,有效利用电力系统的拓扑信息、节点特征和边特征,从而检测出异常值。数据恢复部分采用变分自编码器(variational auto-encoder,VAE)模型,该模型将深度学习思想与贝叶斯推理相结合,可以有效地将异常数据恢复到在正常运行情况下的数值。针对不同攻击强度和攻击程度下的IEEE 14系统进行案例研究,以评估防御框架的检测与恢复性能。仿真结果表明,基于IGCN的异常检测子框架性能优于常规的数据驱动模型框架,其总体精确率为99.348%,召回率为99.331%,F1值为99.324%,基于VAE的数据恢复子框架的总体平均绝对误差为0.00534 p.u.,证明了防御框架优异的检测与恢复性能。展开更多
文摘L波段数字航空通信系统(L band digital aeronautical communication system,LDACS)是未来航空宽带通信重要的基础设施之一,针对LDACS信号容易受到相邻波道大功率测距仪(distance measuring equipment,DME)信号干扰的问题,提出了联合正交投影干扰抑制与单快拍稀疏分解的波达方向(direction of arrival,DOA)估计方法。通过子空间投影抑制DME干扰,然后使用单快拍数据构建伪协方差矩阵,对伪协方差矩阵求高阶幂,之后进行奇异值分解,并利用约束条件求解稀疏解得到期望信号来向的估计值。所提方法使用高阶伪协方差矩阵降低了噪声影响,仅用单快拍就可以准确估计LDACS信号的入射方向。仿真结果表明,改进单快拍高级幂(improved single snapshot high order power,ISS-HOP)L1-SVD算法的估计精度优于ISS-HOP-MUSIC算法。该方法可以有效抑制DME干扰,提高OFDM接收机性能。
文摘电力系统状态估计(power system state estimation,PSSE)在现代智能电网的稳定运行中起着至关重要的作用,但它也容易遭受网络攻击。虚假数据注入攻击(false data injection attacks,FDIA)是最常见的网络攻击方式之一,它可以篡改量测数据并绕过不良数据检测(bad data detection,BDD)机制,从而导致不正确的状态估计结果。文中提出一种基于数据驱动的针对PSSE的FDIA防御框架,该框架包含异常检测子框架和数据恢复子框架。异常检测部分采用改进的图卷积网络(improved graph convolutional network,IGCN)模型,该模型采用动态的边缘条件滤波器作用于图结构中,有效利用电力系统的拓扑信息、节点特征和边特征,从而检测出异常值。数据恢复部分采用变分自编码器(variational auto-encoder,VAE)模型,该模型将深度学习思想与贝叶斯推理相结合,可以有效地将异常数据恢复到在正常运行情况下的数值。针对不同攻击强度和攻击程度下的IEEE 14系统进行案例研究,以评估防御框架的检测与恢复性能。仿真结果表明,基于IGCN的异常检测子框架性能优于常规的数据驱动模型框架,其总体精确率为99.348%,召回率为99.331%,F1值为99.324%,基于VAE的数据恢复子框架的总体平均绝对误差为0.00534 p.u.,证明了防御框架优异的检测与恢复性能。