期刊文献+
共找到2,695篇文章
< 1 2 135 >
每页显示 20 50 100
Sensors deployment optimization in multi-dimensional space based on improved particle swarm optimization algorithm 被引量:11
1
作者 TANG Mingnan CHEN Shijun +2 位作者 ZHENG Xuehe WANG Tianshu CAO Hui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期969-982,共14页
Sensors deployment optimization has become one of the most attractive fields in recent years. However, most of the previous work focused on the deployment problem in 2D space.Compared to the traditional form, sensors ... Sensors deployment optimization has become one of the most attractive fields in recent years. However, most of the previous work focused on the deployment problem in 2D space.Compared to the traditional form, sensors deployment in multidimensional space has greater research significance and practical potential to satisfy the detecting needs in complex environment.Aiming at solving this issue, a multi-dimensional space sensor network model is established, and the radar system is selected as an example. Considering the possible working mode of the radar system(e.g., searching and tracking), two distinctive deployment models are proposed based on maximum coverage area and maximum target detection probability in the attack direction respectively. The latter one is usually ignored in the previous literature.For uncovering the optimal deployment of the sensor network, the particle swarm optimization(PSO) algorithm is improved using the proposed weights determination scheme, in which the linear decreasing, the pooling strategy and the cloud theory are combined for weights updating. Experimental results illustrate the effectiveness of the proposed method. 展开更多
关键词 spatial sensor optimized deployment strategy particle swarm optimization(PSO)
在线阅读 下载PDF
Improved particle swarm optimization algorithm for fuzzy multi-class SVM 被引量:18
2
作者 Ying Li Bendu Bai Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期509-513,共5页
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its... An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 展开更多
关键词 particle swarm optimization(PSO) fuzzy support vector machine(FSVM) adaptive mutation multi-classification.
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
3
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
Hybrid particle swarm optimization for multiobjective resource allocation 被引量:4
4
作者 Yi Yang Li Xiaoxing Gu Chunqin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期959-964,共6页
Resource allocation (RA) is the problem of allocating resources among various artifacts or business units to meet one or more expected goals, such a.s maximizing the profits, minimizing the costs, or achieving the b... Resource allocation (RA) is the problem of allocating resources among various artifacts or business units to meet one or more expected goals, such a.s maximizing the profits, minimizing the costs, or achieving the best qualities. A complex multiobjective RA is addressed, and a multiobjective mathematical model is used to find solutions efficiently. Then, all improved particie swarm algorithm (mO_PSO) is proposed combined with a new particle diversity controller policies and dissipation operation. Meanwhile, a modified Pareto methods used in PSO to deal with multiobjectives optimization is presented. The effectiveness of the provided algorithm is validated by its application to some illustrative example dealing with multiobjective RA problems and with the comparative experiment with other algorithm. 展开更多
关键词 resource allocation multiobjective optimization improved particle swarm optimization.
在线阅读 下载PDF
Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization 被引量:25
5
作者 XU Zhen ZHANG Enze CHEN Qingwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期130-141,共12页
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,le... This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths. 展开更多
关键词 unmanned aerial vehicle(UAV) path planning multiobjective optimization particle swarm optimization
在线阅读 下载PDF
Multi-objective fuzzy particle swarm optimization based on elite archiving and its convergence 被引量:1
6
作者 Wei Jingxuan Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1035-1040,共6页
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob... A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front. 展开更多
关键词 multi-objective optimization particle swarm optimization fuzzy personal best fuzzy global best elite archiving.
在线阅读 下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
7
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 multi-OBJECTIVE WORKFLOW scheduling multi-swarm optimization particle swarm optimization (PSO) CLOUD computing system
在线阅读 下载PDF
Immune particle swarm optimization of linear frequency modulation in acoustic communication 被引量:4
8
作者 Haipeng Ren Yang Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期450-456,共7页
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca... With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method. 展开更多
关键词 underwater acoustic communication carrier waveform inter-displacement (CWlD) multi-objective optimization immune particle swarm optimization (IPSO).
在线阅读 下载PDF
采用动态种群策略的多目标粒子群优化算法 被引量:1
9
作者 杜睿山 井远光 +3 位作者 付晓飞 孟令东 张豪鹏 王紫珊 《吉林大学学报(理学版)》 北大核心 2025年第3期845-854,共10页
针对多目标粒子群优化算法中多样性和收敛性难以平衡的问题,提出一种基于动态种群的多目标粒子群优化算法.该算法种群数量的增加或减少取决于档案中的资源,从而调节种群数量.一方面,通过基于网格技术的局部扰动添加粒子,以增加粒子的局... 针对多目标粒子群优化算法中多样性和收敛性难以平衡的问题,提出一种基于动态种群的多目标粒子群优化算法.该算法种群数量的增加或减少取决于档案中的资源,从而调节种群数量.一方面,通过基于网格技术的局部扰动添加粒子,以增加粒子的局部搜索能力,提高算法的多样性;另一方面,为防止种群规模过度增长,利用非支配排序和种群密度控制种群规模,以加快算法搜索进度,避免过早收敛.选取5种对比算法在测试函数上进行实验,实验结果表明,该算法具有明显的多样性和收敛性优势. 展开更多
关键词 动态种群 粒子群优化 多目标优化 多样性 收敛性
在线阅读 下载PDF
基于改进粒子群算法的光伏逆变器控制参数辨识 被引量:4
10
作者 罗建 孙越 江丽娟 《河南理工大学学报(自然科学版)》 CAS 北大核心 2025年第1期124-133,共10页
精准的光伏并网逆变器模型是研究大规模光伏接入下电力系统故障特性的重要工具。目的为了解决现有光伏逆变器仿真模型与实际工作中的光伏逆变器特性相差较大的问题,方法提出采用参数辨识的方法构建逆变器的辨识模型。以重庆云阳某1 MW... 精准的光伏并网逆变器模型是研究大规模光伏接入下电力系统故障特性的重要工具。目的为了解决现有光伏逆变器仿真模型与实际工作中的光伏逆变器特性相差较大的问题,方法提出采用参数辨识的方法构建逆变器的辨识模型。以重庆云阳某1 MW光伏电站为实际参照模型,首先根据实际工作情况将逆变器的工作区间划分为3个阶段,利用数学扰动法分别对3个阶段中的待辨识参数划分灵敏度高低等级,并由此提出不同阶段不同灵敏度参数分步辨识策略;其次,分阶段采集实际光伏电站工作数据,对该数据进行分析处理,获得各待辨识参数的初始取值范围,设计同步辨识参数实验作为参照;最后提出改进的混沌遗传粒子群优化算法(chaos genetic algorithm of particle swarm optimization,CGAPSO)作为辨识算法,分步分工作阶段辨识相关参数,通过对比参数的同步辨识结果,验证所提方法的优越性,并将辨识结果代入仿真模型。结果结果表明,低灵敏度参数的同步辨识结果误差远超过可接受范围,而CGAPSO分步辨识出的相关参数误差皆在1.1%以下,精度远高于同步辨识结果。结论基于改进粒子群算法构建的辨识模型输出数据与实际逆变器工作数据契合度高,可准确反映逆变器实际工作特性。 展开更多
关键词 光伏并网逆变器 逆变器控制策略 参数辨识 数学扰动法 改进粒子群优化算法
在线阅读 下载PDF
基于自适应等效能耗最小的燃料电池船舶能量管理策略 被引量:1
11
作者 许晓彦 曹伟 韩冰 《太阳能学报》 北大核心 2025年第3期108-115,共8页
为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储... 为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储能系统最终电量和初始电量误差最小为目标函数,求解燃料电池系统和储能系统的最优运行轨迹;在下层优化中,建立等效因子的优化模型,提取最优等效因子的分布。然后,建立以系统状态参数为输入、等效因子为输出的神经网络模型。利用最优的等效因子作为训练样本,对神经网络模型进行训练。最后,将神经网络模型与等效能耗最小策略相结合,可实现等效因子的实时调整。在Matlab/Simulink中搭建船舶混合能源系统的仿真模型,对基于自适应等效能耗最小的能量管理策略进行验证。仿真结果表明,与基于恒定等效因子的等效能耗最小策略相比,储能系统的最终电量更接近初始值,氢气的总消耗量降低1.98%。 展开更多
关键词 燃料电池船 能量管理策略 神经网络 等效因子 多种群自适应协同的粒子群优化算法
在线阅读 下载PDF
基于粒子群优化算法的东构造结滑坡清单建立与侵蚀速率估算 被引量:1
12
作者 耿豪鹏 徐子怡 +1 位作者 郭宇 张建 《水土保持学报》 北大核心 2025年第2期338-347,共10页
[目的]构建喜马拉雅东构造结地区大范围的多时相滑坡清单,量化滑坡侵蚀速率,揭示滑坡过程在该区域的地貌学意义。[方法]基于粒子群优化算法(particle swarm optimization,PSO)进行遥感影像归一化植被指数(normalized difference vegetat... [目的]构建喜马拉雅东构造结地区大范围的多时相滑坡清单,量化滑坡侵蚀速率,揭示滑坡过程在该区域的地貌学意义。[方法]基于粒子群优化算法(particle swarm optimization,PSO)进行遥感影像归一化植被指数(normalized difference vegetation index,NDVI)的变化检测,构建1987-2021年东构造结地区的多时相滑坡清单;根据滑坡面积-体积经验公式计算该区域的滑坡侵蚀速率;结合气候和地形等参数,探讨滑坡过程的诱发因素。[结果]研究区1987-2021年共识别滑坡1 323次,其中2017-2021年的滑坡数量最多,共389次;滑坡主要分布在雅鲁藏布江大拐弯附近的河谷两侧;研究区滑坡侵蚀速率为0~76.06 mm/a,平均值为0.44 mm/a,呈以雅鲁藏布江大拐弯段为中心向四周逐渐降低的变化趋势;滑坡侵蚀速率与地质尺度岩体的剥露速率及千年尺度流域平均侵蚀速率相近;研究区滑坡的发生与降雨过程和地震活动相关,主要发育在南向坡面上,并在海拔1 500~3 000 m和坡度35°~45°聚集。[结论]滑坡是东构造结地区的主导侵蚀过程;降雨受迎风坡效应的影响在南向坡面富集,驱动该坡向上滑坡的集中分布。降水促进河流下切,以陡化边坡的方式诱发滑坡。 展开更多
关键词 粒子群优化算法 多时相滑坡清单 喜马拉雅东构造结 滑坡侵蚀速率 地貌演化
在线阅读 下载PDF
智能井流量控制系统高温电磁阀结构优化设计 被引量:3
13
作者 郑严 顿志强 +3 位作者 王晓 王龙 钟俊宇 马传钦 《液压与气动》 北大核心 2025年第3期50-60,共11页
井下流量控制系统作为智能完井系统的核心部件,对井下智能开采至关重要,而井下高温电磁阀作为电控液驱流量控制系统的重要元件,对控制系统性能起到关键作用。介绍了电磁阀结构及工作原理,利用有限元仿真建立电磁铁模型,分析了电磁铁静... 井下流量控制系统作为智能完井系统的核心部件,对井下智能开采至关重要,而井下高温电磁阀作为电控液驱流量控制系统的重要元件,对控制系统性能起到关键作用。介绍了电磁阀结构及工作原理,利用有限元仿真建立电磁铁模型,分析了电磁铁静铁芯锥角、静铁芯凸台、线圈位置、隔磁环倾角、隔磁环长度对电磁力特性影响,并进行了电磁-热耦合仿真分析。采用正交试验设计研究影响电磁力结构参数之间的主次关系,并基于响应面法与改进粒子群算法结合的优化思路,对电磁铁结构参数进行优化设计。优化后0 mm处的电磁力提高了16.68%,0.5 mm处电磁力提高了29.62%,1 mm处电磁力提高了31.06%,为电控液驱型流量控制系统设计奠定了理论基础。 展开更多
关键词 智能井 流量控制系统 高温电磁阀 正交试验 改进粒子群算法
在线阅读 下载PDF
基于多目标粒子群-遗传混合算法的高速球轴承优化设计方法 被引量:1
14
作者 杨文 叶帅 +2 位作者 姚齐水 余江鸿 胡美娟 《机电工程》 北大核心 2025年第2期226-236,共11页
目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出... 目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出了一种基于多目标粒子群-遗传混合算法的球轴承结构优化设计方法。首先,建立了以轴承最大额定动载荷、最大额定静载荷和最小摩擦生热率为目标函数的优化数学模型;然后,利用多目标粒子群算法(MOPSO)的全局搜索能力和改进非支配排序遗传算法(NSGA-II)的进化操作,引入粒子寻优速度控制策略、交叉变异策略和罚函数机制,解决了带约束优化问题求解和局部最优问题,增强了算法的收敛速度和解集探索能力;最后,在特定工况下对轴承结构进行了优化,采用层次分析法,从Pareto前沿中优选了内外圈沟曲率半径系数、滚动体数量、滚动体直径和节圆直径的最优值。研究结果表明:在16 kN径向载荷、15 000 r/min的高转速工况下,以新能源汽车电驱系统6206型深沟球轴承为例进行了分析,结果显示,优化后的轴承接触应力下降了21.2%,应变下降了25.6%,摩擦生热下降了16.7%,体现了该方法在收敛性能、寻优速度等方面的优势。该优化设计方法可为球轴承的工程应用提供有价值的参考。 展开更多
关键词 高速球轴承结构设计 多目标粒子群-遗传混合算法 改进非支配排序遗传算法 优化设计目标函数 层次分析法 6206型深沟球轴承
在线阅读 下载PDF
不确定环境下多无人机察打一体任务规划方法 被引量:2
15
作者 张栋 李林 +3 位作者 王孟阳 李超越 郑元世 李智军 《北京理工大学学报》 北大核心 2025年第2期111-125,共15页
针对动态不确定战场环境下多无人机对多区域、多目标的协同察打任务规划过程中存在的信息不确定、任务多约束及航迹强耦合的多目标优化与决策问题,结合Dubins航迹规划算法,提出了一种融合多种改进策略的灰狼优化算法(grey wolf optimiza... 针对动态不确定战场环境下多无人机对多区域、多目标的协同察打任务规划过程中存在的信息不确定、任务多约束及航迹强耦合的多目标优化与决策问题,结合Dubins航迹规划算法,提出了一种融合多种改进策略的灰狼优化算法(grey wolf optimization algorithm incorporating multiple improvement strategies,IMISGWO).首先,针对动态环境带来的无人机巡航速度及察打任务消失时间的不确定性,基于可信性理论建立了以最大化任务收益为指标的任务规划数学模型;其次,为实现该问题的快速求解,设计了初始解均匀分布、个体通信机制调整、动态权重更新和跳出局部最优等策略,提升算法解搜索能力;最后,构建了多无人机察打一体典型任务仿真场景,通过数字仿真以及虚实结合半实物仿真试验验证了算法的可行性和有效性.仿真结果表明:算法在求解不确定环境下耦合航迹的多无人机察打一体任务规划问题时,能够生成多机高效的任务执行序列和满足无人机飞行性能约束的飞行轨迹,且能够适用于无人机数量增加导致问题复杂度增加情形下此类问题的求解. 展开更多
关键词 多无人机 不确定环境 察打一体任务 任务规划 改进灰狼优化算法
在线阅读 下载PDF
基于改进多目标粒子群算法的码头结构传感器优化布置 被引量:1
16
作者 周鹏飞 张雍 《振动与冲击》 北大核心 2025年第1期243-251,共9页
为解决码头结构健康监测领域的传感器优化布置问题,提出了一种基于改进多目标粒子群(IMOPSO)的传感器优化布置算法。针对传统方法寻优效率低、优化目标单一,难以同时满足模态识别、损伤识别等复杂的健康监测需求的问题,构建了以损伤敏... 为解决码头结构健康监测领域的传感器优化布置问题,提出了一种基于改进多目标粒子群(IMOPSO)的传感器优化布置算法。针对传统方法寻优效率低、优化目标单一,难以同时满足模态识别、损伤识别等复杂的健康监测需求的问题,构建了以损伤敏感性和冗余性、损伤识别不适定性以及模态线性独立性的多目标优化函数;改进多目标粒子群算法获取Pareto解集,利用TOPSIS熵权法确定最优传感器布置方案。在某高桩码头试验表明:与有效独立法和有效独立-模态动能法相比,IMOPSO得到的布设方案测点分布更均匀,在灵敏度矩阵条件数、MAC最大非对角元、损伤冗余性指标分别优化了45%、90%、5%以上;多种工况下的损伤位置和程度识别准确率在不同噪声下平均提高5%和7%以上。 展开更多
关键词 码头结构健康监测 传感器优化布置 损伤识别 改进多目标粒子群(IMOPSO)
在线阅读 下载PDF
改进PSO-PH-RRT^(*)算法在智能车路径规划中的应用 被引量:1
17
作者 蒋启龙 许健 《东北大学学报(自然科学版)》 北大核心 2025年第3期12-19,共8页
在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(... 在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(*))算法.该算法在基于均匀概率的快速拓展随机树(PHRRT^(*))算法的基础上,利用粒子群算法更新方向概率作为随机树节点的速度方向,从而改善了节点的位置更新策略,并将节点到目标向量的距离和轨迹平滑度作为粒子群算法的适应度函数.最后在多种障碍环境下进行仿真.结果表明,PSO-PH-RRT^(*)算法能大大减少迭代时间成本,同时改善路径长度和平滑度. 展开更多
关键词 路径规划 RRT算法 改进粒子群优化算法 目标向量 代价函数 适应度函数
在线阅读 下载PDF
基于改进MOPSO和多目标的SCARA并联机器人的食品分拣轨迹优化 被引量:1
18
作者 金光 李若琪 郑强仁 《食品与机械》 北大核心 2025年第8期85-92,共8页
[目的]针对SCARA高速并联机器人在食品分拣过程中运行冲击与能耗难以兼顾的问题,通过轨迹优化方法提升其综合性能,满足食品分拣场景对平稳、低耗的实际需求。[方法]在对整个食品分拣系统进行分析的基础上,提出了一种结合改进非均匀五次... [目的]针对SCARA高速并联机器人在食品分拣过程中运行冲击与能耗难以兼顾的问题,通过轨迹优化方法提升其综合性能,满足食品分拣场景对平稳、低耗的实际需求。[方法]在对整个食品分拣系统进行分析的基础上,提出了一种结合改进非均匀五次B样条和多目标模型的SCARA高速并联机器人食品分拣轨迹优化方法。通过始末路径引入虚拟路径点优化非均匀五次B样条插值方法构建SCARA高速并联机器人食品分拣轨迹,以运行冲击和运行能耗综合最优为多目标轨迹优化模型,通过外部档案、全局最优粒子、惯性权重优化的多目标粒子群算法求解模型,完成SCARA高速并联机器人轨迹优化。通过试验对所提轨迹优化方法的运行冲击和能耗进行分析。[结果]所提轨迹优化方法可有效实现SCARA高速并联机器人食品分拣过程中运行冲击与能耗的综合优化,轨迹平滑性与算法求解性能均得到显著提升。与优化前相比,运行冲击和运行能耗降低50%以上,不同分拣速度下的误差未超过1 mm。[结论]通过结合改进非均匀五次B样条与多目标模型的轨迹优化方法,可实现机器人在食品分拣过程中运行冲击和能耗的综合最优。 展开更多
关键词 高速并联机器人 食品分拣 轨迹优化 五次B样条 多目标粒子群算法
在线阅读 下载PDF
基于层级分解的前围声学包多目标优化 被引量:1
19
作者 杨帅 吴宪 薛顺达 《振动与冲击》 北大核心 2025年第3期267-277,共11页
搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变... 搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变量范围,以PBNR(power based noise reduction)均值作为约束,以质量和成本作为优化目标,采用非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)进行多目标优化,得到Pareto多目标解集。并从中选取满足设计目标的最佳组合方案(材料组合、覆盖率、前围过孔密封方案选型)。结果显示,该模型最终的优化结果与实测结果接近,误差分别为0.35%,1.47%,1.82%,相较于初始声学包方案,优化后的结果显示,PBNR均值提升3.05%,其质量降低52.38%,成本降低15.15%,验证了所提方法的有效性和准确性。 展开更多
关键词 GAPSO-RBFNN 声学包 PBNR NSGA-II Pareto多目标解集
在线阅读 下载PDF
基于系统辨识和改进多目标粒子群算法的水泥原料配比优化
20
作者 秦红斌 陈龙 +1 位作者 唐红涛 张峰 《控制工程》 北大核心 2025年第7期1260-1270,共11页
为了得到高品质、低成本的水泥生料,对原料配比优化问题进行了研究。首先,针对原料氧化物含量波动和立磨工况变化的问题,提出了原料氧化物含量等效值的概念,将其作为水泥生料氧化物含量和原料配比之间的关系参数,并利用系统辨识方法对... 为了得到高品质、低成本的水泥生料,对原料配比优化问题进行了研究。首先,针对原料氧化物含量波动和立磨工况变化的问题,提出了原料氧化物含量等效值的概念,将其作为水泥生料氧化物含量和原料配比之间的关系参数,并利用系统辨识方法对其进行求解;然后,建立了以最小化原料成本和原料配比调整量为目标的原料配比多目标优化模型,将各项生料质量控制指标加入约束条件以保证解的可行性,并提出了改进多目标粒子群优化算法对模型进行求解。实验结果表明,相比于非支配排序遗传算法II(non-dominated sorting genetic algorithm II,NSGA-II)和人工配比,采用所提算法优化原料配比,不仅将各项生料质量控制指标较好地控制在目标范围内,还降低了原料成本。 展开更多
关键词 水泥原料配比 原料氧化物含量等效值 系统辨识 改进多目标粒子群优化算法
在线阅读 下载PDF
上一页 1 2 135 下一页 到第
使用帮助 返回顶部