针对网联商用车换道安全性、平顺性较低的问题,提出一种基于多策略改进金豺优化算法(multi-strategy improved golden jackal optimization,MSIGJO)的网联商用车换道轨迹规划方法。首先,基于V2X(vehicle to everything)技术获取智能网...针对网联商用车换道安全性、平顺性较低的问题,提出一种基于多策略改进金豺优化算法(multi-strategy improved golden jackal optimization,MSIGJO)的网联商用车换道轨迹规划方法。首先,基于V2X(vehicle to everything)技术获取智能网联商用车周围状态信息,建立商用车换道安全距离模型;其次,引入商用车换道平顺性、经济性和换道效率作为指标,构建多目标协同优化函数;最后,引入动态权重位置更新策略和翻转策略改进金豺优化算法(golden jackal optimization,GJO),进而提出MSIGJO算法,利用MSIGJO算法求解函数得到最优换道轨迹。研究结果表明:该方法在商用车换道过程中横向跟踪精度提升了12.67%,侧向加速度变化率和质心侧偏角变化率分别降低了11.94%和12.65%,有效提升智能网联商用车换道安全性和平顺性,为智能网联商用车换道轨迹规划研究提供参考。展开更多
为了解决金豺优化算法种群多样性差、收敛速度慢、易陷入局部最优等问题,提出了一种多策略强化的金豺优化算法(strengthening golden jackal optimization,SGJO)。首先,采用混沌精英池策略生成精英种群以增强种群多样性并提高初始解质量...为了解决金豺优化算法种群多样性差、收敛速度慢、易陷入局部最优等问题,提出了一种多策略强化的金豺优化算法(strengthening golden jackal optimization,SGJO)。首先,采用混沌精英池策略生成精英种群以增强种群多样性并提高初始解质量;然后利用自适应扰动因子更新个体位置以扩大算法的寻优范围;最后,基于种群内个体差异引入柯西高斯突变策略,以解决算法易陷入局部最优的难题且有效提高了收敛速度。通过在基准测试函数与CEC2021测试函数上进行策略有效性实验,并与其他群智能优化算法对比实验来验证SGJO算法的寻优性能,通过Wilcoxon秩和检验与汽车侧面碰撞优化问题来验证SGJO算法的稳健性和有效性。实验结果表明,多策略强化的金豺优化算法有效增强了算法的寻优能力及收敛速度,与其他算法相比具有一定的优越性。展开更多
文摘针对网联商用车换道安全性、平顺性较低的问题,提出一种基于多策略改进金豺优化算法(multi-strategy improved golden jackal optimization,MSIGJO)的网联商用车换道轨迹规划方法。首先,基于V2X(vehicle to everything)技术获取智能网联商用车周围状态信息,建立商用车换道安全距离模型;其次,引入商用车换道平顺性、经济性和换道效率作为指标,构建多目标协同优化函数;最后,引入动态权重位置更新策略和翻转策略改进金豺优化算法(golden jackal optimization,GJO),进而提出MSIGJO算法,利用MSIGJO算法求解函数得到最优换道轨迹。研究结果表明:该方法在商用车换道过程中横向跟踪精度提升了12.67%,侧向加速度变化率和质心侧偏角变化率分别降低了11.94%和12.65%,有效提升智能网联商用车换道安全性和平顺性,为智能网联商用车换道轨迹规划研究提供参考。
文摘为了解决金豺优化算法种群多样性差、收敛速度慢、易陷入局部最优等问题,提出了一种多策略强化的金豺优化算法(strengthening golden jackal optimization,SGJO)。首先,采用混沌精英池策略生成精英种群以增强种群多样性并提高初始解质量;然后利用自适应扰动因子更新个体位置以扩大算法的寻优范围;最后,基于种群内个体差异引入柯西高斯突变策略,以解决算法易陷入局部最优的难题且有效提高了收敛速度。通过在基准测试函数与CEC2021测试函数上进行策略有效性实验,并与其他群智能优化算法对比实验来验证SGJO算法的寻优性能,通过Wilcoxon秩和检验与汽车侧面碰撞优化问题来验证SGJO算法的稳健性和有效性。实验结果表明,多策略强化的金豺优化算法有效增强了算法的寻优能力及收敛速度,与其他算法相比具有一定的优越性。