期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于FOA-SVM模型的输油管道内腐蚀速率预测 被引量:17
1
作者 吴庆伟 王金龙 张平 《腐蚀与防护》 北大核心 2017年第9期732-736,共5页
针对管道内腐蚀速率相关问题,采集某输油管道内腐蚀的实测数据,应用多元统计分析算法,在支持向量机(SVM)的基础上建立管道内腐蚀速率预测模型。采用果蝇优化算法(FOA)对预测模型进行优化训练,建立FOASVM预测模型,利用实测数据样本对模... 针对管道内腐蚀速率相关问题,采集某输油管道内腐蚀的实测数据,应用多元统计分析算法,在支持向量机(SVM)的基础上建立管道内腐蚀速率预测模型。采用果蝇优化算法(FOA)对预测模型进行优化训练,建立FOASVM预测模型,利用实测数据样本对模型的预测结果进行检验。结果表明:综合方差和均差分别为1.397×10-3和0.037 4,FOA-SVM预测模型相比灰色组合模型预测值和最小二乘支持向量机(LS-SVM)模型预计结果稳定性好、精度高,但是FOA-SVM预测模型训练时间较长,今后在提高模型预测效率上需要进一步研究。 展开更多
关键词 管道内腐蚀速率 支持向量机SVM 果蝇算法foa 多元统计分析
在线阅读 下载PDF
基于合作博弈与动态分时电价的电动汽车有序充放电策略
2
作者 舒征宇 刘文灿 +2 位作者 李黄强 王灿 姚钦 《电力工程技术》 北大核心 2025年第3期179-187,共9页
随着电动汽车的迅速发展,其在用电高峰期的充电需求给配电网带来了巨大的供电压力。现有研究中,虽然对电动汽车进行有序充放电调度能够有效缓解配电网的供电压力,但大多数电动汽车充电站代理商并未考虑不同电动汽车用户之间的需求差异性... 随着电动汽车的迅速发展,其在用电高峰期的充电需求给配电网带来了巨大的供电压力。现有研究中,虽然对电动汽车进行有序充放电调度能够有效缓解配电网的供电压力,但大多数电动汽车充电站代理商并未考虑不同电动汽车用户之间的需求差异性,无差别对待电动汽车的充放电调度,只会徒增电网侧的供电压力。为解决此类问题,文中首先在合作博弈的框架下,考虑电动汽车代理商与电动汽车用户之间的博弈关系,提出电价指导用户充电选择的电动汽车充电调度优化方法,并搭建电动汽车的动态分时优化充放电仿真模型。然后,在求解过程中,利用改进的果蝇优化算法(fruit fly optimization algorithm,FOA)对电动汽车充电时段进行规划。最后,通过算例仿真分析验证该策略的可行性与经济性。与现有的固定电价策略相比,所提策略不仅可以有效减小电网负荷的峰谷差,避免负荷“新高峰”,而且可以提高代理商和电动汽车用户的收益。 展开更多
关键词 充电选择 有序充放电 改进的果蝇优化算法(foa) 动态分时电价 合作博弈收益 削峰填谷
在线阅读 下载PDF
基于改进FOA优化的CS-SVM轴承故障诊断研究 被引量:18
3
作者 何大伟 彭靖波 +2 位作者 胡金海 李腾辉 贾伟州 《振动与冲击》 EI CSCD 北大核心 2018年第18期108-114,共7页
针对故障诊断中的小样本及样本类不平衡问题。建立基于代价敏感支持向量机(CS-SVM)的故障诊断模型,提出采用改进FOA算法(IFOA)对规则化常数C+,C-和核函数参数g进行优化选取,通过增大对故障类样本错分的惩罚代价,提升对故障类的诊断正确... 针对故障诊断中的小样本及样本类不平衡问题。建立基于代价敏感支持向量机(CS-SVM)的故障诊断模型,提出采用改进FOA算法(IFOA)对规则化常数C+,C-和核函数参数g进行优化选取,通过增大对故障类样本错分的惩罚代价,提升对故障类的诊断正确率;以IMS航空轴承试验数据为对象,结合随机共振、KPCA特征提取方法对所提IFOA优化的CS-SVM模型进行了验证。结果表明,该方法能有效处理误分类代价不同的轴承故障诊断问题,提高了故障类样本的诊断正确率,可拓展应用至其它故障诊断领域。 展开更多
关键词 轴承故障诊断 改进果蝇优化算法(Ifoa) 代价敏感支持向量机(S-SVM)
在线阅读 下载PDF
WSN中利用改进FOA-GRNN和迭代Cubature卡尔曼滤波的实时目标跟踪方法 被引量:1
4
作者 罗宏等 蓝耿 +2 位作者 聂良刚 粟光旺 伍一坤 《计算机应用与软件》 北大核心 2021年第12期135-141,219,共8页
针对传统无线传感器网络(Wireless Sensor Network,WSN)对运动目标的定位和跟踪容易产生明显误差的问题,提出利用改进FOA-GRNN和迭代Cubature卡尔曼滤波的实时目标跟踪方法。基于改进FOA-GRNN法,利用从锚点接收到的运动目标的模拟(RSSI... 针对传统无线传感器网络(Wireless Sensor Network,WSN)对运动目标的定位和跟踪容易产生明显误差的问题,提出利用改进FOA-GRNN和迭代Cubature卡尔曼滤波的实时目标跟踪方法。基于改进FOA-GRNN法,利用从锚点接收到的运动目标的模拟(RSSI)值和相应的实际目标二维位置对GRNN进行训练,从而获得单个目标在二维运动时的准确初始位置;利用迭代Cubature卡尔曼滤波法对实时目标进行精准定位和测距,获得实时目标的准确定位和跟踪信息;将改进的FOA-GRNN法和迭代Cubature卡尔曼滤波法相结合用于WSN中实时目标跟踪和定位,在提高初始位置精度的同时,还提高了实时目标定位和跟踪信息的准确度。实验结果表明,相比其他几种较新的方法,该方法改善了WSN中实时目标的跟踪性能,降低了误差,提高了跟踪精度。 展开更多
关键词 卡尔曼滤波 无线传感器网络 改进的foa-GRNN 迭代Cubature 实时目标跟踪
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部