为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首...为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首先,运用互信息算法进行输入数据的变量选择,以消除冗余变量。其次,通过互补集合经验模态分解和改进的小波阈值算法对筛选后的数据进行特征重构,旨在降低数据中的噪声干扰并完成输入变量的特征优化。随后,结合改进的Tent混沌映射、非线性递减因子、动态权重策略和差分进化算法对标准灰狼优化算法进行混合优化,以确定双向长短期记忆神经网络的最优超参数组合,并引入注意力机制以挖掘数据中的关键时序信息,最终构建出一种新型的短期光伏功率预测模型。仿真实验表明,相较于最小二乘支持向量机、长短期记忆网络和双向长短期记忆网络,所提模型在晴天、多云、阴天和降雨等不同工况下的均方根误差平均分别降低了12.45%、7.95%和5.37%,显示出优秀的预测性能、良好的泛化能力和潜在的工程应用价值。展开更多
为了提高网络入侵检测的正确率,提出一种基于KNN-IPSO选择特征的网络入侵检测模型(KNN-IPSO)。首先采用K近邻算法消除原始网络数据中的冗余特征,并将其作为粒子群算法的初始解,然后采用粒子群算法找到最优特征子集,并对粒子的惯性权重...为了提高网络入侵检测的正确率,提出一种基于KNN-IPSO选择特征的网络入侵检测模型(KNN-IPSO)。首先采用K近邻算法消除原始网络数据中的冗余特征,并将其作为粒子群算法的初始解,然后采用粒子群算法找到最优特征子集,并对粒子的惯性权重进行自适应调整和种群进行混沌操作,帮助种群跳出局部最优,最后采用KDD CUP 99数据集对KNN-IPSO的性能进行测试。结果表明,KNN-IPSO消除了冗余特征,降低了分类器的输入维数,有效提高了入侵检测正确率和检测速度。展开更多
针对支持向量机(SVM)应用于网络入侵检测时特征选择及分类器参数优化问题,利用改进的二进制量子引力搜索算法(IBQGSA)对入侵特征集及SVM参数进行组合寻优。将入侵特征集及SVM参数看作是二进制量子引力搜索算法中的量子个体并进行组合编...针对支持向量机(SVM)应用于网络入侵检测时特征选择及分类器参数优化问题,利用改进的二进制量子引力搜索算法(IBQGSA)对入侵特征集及SVM参数进行组合寻优。将入侵特征集及SVM参数看作是二进制量子引力搜索算法中的量子个体并进行组合编码,在使用量子旋转门更新个体位移时,引入动态的位移更新策略,确保算法收敛到全局极值,设计与进化程度及个体适应度值相关的自适应变异概率,提升量子非门变异操作时算法的自适应变异能力。利用KDD CUP 99数据集进行仿真实验,实验结果表明,所提算法能有效地获取最佳特征子集及分类器参数组合,检测效果更好。展开更多
文摘为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首先,运用互信息算法进行输入数据的变量选择,以消除冗余变量。其次,通过互补集合经验模态分解和改进的小波阈值算法对筛选后的数据进行特征重构,旨在降低数据中的噪声干扰并完成输入变量的特征优化。随后,结合改进的Tent混沌映射、非线性递减因子、动态权重策略和差分进化算法对标准灰狼优化算法进行混合优化,以确定双向长短期记忆神经网络的最优超参数组合,并引入注意力机制以挖掘数据中的关键时序信息,最终构建出一种新型的短期光伏功率预测模型。仿真实验表明,相较于最小二乘支持向量机、长短期记忆网络和双向长短期记忆网络,所提模型在晴天、多云、阴天和降雨等不同工况下的均方根误差平均分别降低了12.45%、7.95%和5.37%,显示出优秀的预测性能、良好的泛化能力和潜在的工程应用价值。
文摘为了提高网络入侵检测的正确率,提出一种基于KNN-IPSO选择特征的网络入侵检测模型(KNN-IPSO)。首先采用K近邻算法消除原始网络数据中的冗余特征,并将其作为粒子群算法的初始解,然后采用粒子群算法找到最优特征子集,并对粒子的惯性权重进行自适应调整和种群进行混沌操作,帮助种群跳出局部最优,最后采用KDD CUP 99数据集对KNN-IPSO的性能进行测试。结果表明,KNN-IPSO消除了冗余特征,降低了分类器的输入维数,有效提高了入侵检测正确率和检测速度。
文摘针对支持向量机(SVM)应用于网络入侵检测时特征选择及分类器参数优化问题,利用改进的二进制量子引力搜索算法(IBQGSA)对入侵特征集及SVM参数进行组合寻优。将入侵特征集及SVM参数看作是二进制量子引力搜索算法中的量子个体并进行组合编码,在使用量子旋转门更新个体位移时,引入动态的位移更新策略,确保算法收敛到全局极值,设计与进化程度及个体适应度值相关的自适应变异概率,提升量子非门变异操作时算法的自适应变异能力。利用KDD CUP 99数据集进行仿真实验,实验结果表明,所提算法能有效地获取最佳特征子集及分类器参数组合,检测效果更好。