期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于CLD-COA-ELM的光伏阵列故障诊断方法研究 被引量:5
1
作者 张健 赵咪 +1 位作者 黄毅 李景云 《太阳能学报》 北大核心 2025年第1期632-640,共9页
为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和... 为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和阈值的随机性问题,采用长鼻浣熊优化算法求解最优的初始权重和阈值;进一步地,针对长鼻浣熊算法初始参数的随机性和全局搜索能力的局限性问题,通过Circle混沌映射、莱维飞行和动态折射反向学习对该算法进行优化,提高寻优精度和速度;最后,结合光伏阵列故障实验数据,验证故障诊断模型的分类效果。结果表明,对于训练集和测试集数据,该诊断模型提高了故障分类精度,诊断率分别达到100%和98.33%,优于传统极限学习机、BP神经网络、支持向量机和卷积神经网络故障诊断的准确率。 展开更多
关键词 光伏组件 故障分析 特征选择 监督学习 极限学习机 改进长鼻浣熊优化算法
在线阅读 下载PDF
基于特征优化和混合改进灰狼算法优化BiLSTM网络的短期光伏功率预测 被引量:4
2
作者 赵如意 王晓辉 +3 位作者 郑碧煌 李道兴 高毅 郭鹏天 《电网技术》 北大核心 2025年第1期209-222,I0080-I0084,共19页
为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首... 为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首先,运用互信息算法进行输入数据的变量选择,以消除冗余变量。其次,通过互补集合经验模态分解和改进的小波阈值算法对筛选后的数据进行特征重构,旨在降低数据中的噪声干扰并完成输入变量的特征优化。随后,结合改进的Tent混沌映射、非线性递减因子、动态权重策略和差分进化算法对标准灰狼优化算法进行混合优化,以确定双向长短期记忆神经网络的最优超参数组合,并引入注意力机制以挖掘数据中的关键时序信息,最终构建出一种新型的短期光伏功率预测模型。仿真实验表明,相较于最小二乘支持向量机、长短期记忆网络和双向长短期记忆网络,所提模型在晴天、多云、阴天和降雨等不同工况下的均方根误差平均分别降低了12.45%、7.95%和5.37%,显示出优秀的预测性能、良好的泛化能力和潜在的工程应用价值。 展开更多
关键词 变量选择 互补集合经验模态分解 特征重构 混合改进优化灰狼算法 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
城市交通突发事件风险致因与后果严重程度判别模型
3
作者 范博松 邵春福 +1 位作者 王景升 刘东 《中国安全科学学报》 北大核心 2025年第2期220-226,共7页
为提升城市交通突发事件后果严重程度判别的准确性,明确突发事件风险致因与后果严重程度的相关关系,构建改进的突发事件后果严重程度判别模型(IDM-ECS)并进行试验验证。首先,基于改进的特征选择算法(IFSA)筛选突发事件风险致因,得到列... 为提升城市交通突发事件后果严重程度判别的准确性,明确突发事件风险致因与后果严重程度的相关关系,构建改进的突发事件后果严重程度判别模型(IDM-ECS)并进行试验验证。首先,基于改进的特征选择算法(IFSA)筛选突发事件风险致因,得到列车兑现率、正点率、日路网客运量等重要风险致因;其次,采用改进的混合受限波尔兹曼机模型(HRBM)计算不同风险致因与后果严重程度的关系,通过比较概率值大小得到风险致因与后果严重程度的判别关系;最后,以轨道交通突发事件数据集作为试验样本进行验证,并从召回率、精确度、F_(1)值等方面与生成受限波尔兹曼机(GRBM)、随机森林(RF)、深度森林(DF)、轻量梯度提升机(LightGBM)等4个模型进行对比。研究结果表明:列车兑现率、正点率、日路网客运量、5号线断面满载率、10号线断面满载率、信号故障以及车辆故障为7个最优风险致因。IDM-ECS模型平均的召回率为90.55%、精确度为91.89%、F_(1)值为91.06%,均优于对比模型。 展开更多
关键词 城市交通 突发事件 风险致因 后果严重程度 判别模型 改进的特征选择算法(ifsa)
在线阅读 下载PDF
基于ISSA-Stacking集成学习的共享单车租赁量预测
4
作者 张泽 韩晓明 韩晓霞 《控制工程》 北大核心 2025年第1期39-50,共12页
针对共享单车供需不平衡问题,结合Stacking算法和改进麻雀搜索算法(improved sparrow search algorithm,ISSA),提出了一种基于ISSA-Stacking算法的共享单车租赁量预测模型。首先,利用相关性分析法和轻量级梯度提升机进行特征选择;然后,... 针对共享单车供需不平衡问题,结合Stacking算法和改进麻雀搜索算法(improved sparrow search algorithm,ISSA),提出了一种基于ISSA-Stacking算法的共享单车租赁量预测模型。首先,利用相关性分析法和轻量级梯度提升机进行特征选择;然后,建立多种异质回归预测模型并采用ISSA对各模型的关键超参数进行优化,通过引入精英反向学习策略和自适应种群比例因子来提高麻雀搜索算法的全局搜索能力和收敛速度;最后,利用Stacking算法的集成学习思想对各模型进行融合。实验使用美国华盛顿地区的共享单车出行数据进行租赁量预测,通过对比分析验证了所提融合模型相比单一模型在共享单车租赁量预测方面具有更高的预测精度。 展开更多
关键词 共享单车租赁量预测 集成学习 改进麻雀搜索算法 特征选择
在线阅读 下载PDF
基于特征选择及ISSA-CNN-BiGRU的短期风功率预测 被引量:12
5
作者 王瑞 徐新超 逯静 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期228-239,共12页
针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD... 针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD)将原始功率分解为一组包含不同信息的子分量,以降低原始功率序列的非平稳性,提升可预测性,同时通过观察中心频率方式确定模态分解数。其次,对每一分量采用随机森林(RF)特征重要度的方法进行特征选择,从风速、风向、温度、空气密度等气象特征因素中,选取对各个分量预测贡献度较高的影响因素组成输入特征向量。然后,建立各分量的CNN-BiGRU预测模型,针对神经网络算法参数难调、手动配置参数随机性大的问题,利用ISSA对模型超参数寻优,自适应搜寻最优参数组合。最后,叠加各分量的预测值,得到最终的预测结果。以中国内蒙古某风电场实际数据进行仿真实验,与多种单一及组合预测方法进行对比,结果表明,本文所提方法相比于其他方法具有更高的预测精度,其平均绝对百分比误差值达到2.644 0%;在其他4个数据集上进行的模型准确性及泛化性验证结果显示,模型平均绝对百分比误差值分别为4.385 3%、3.174 9%、1.576 1%和1.358 8%,均保持在5.000 0%以内,证明本文所提方法具有较好的预测精度及泛化能力。 展开更多
关键词 短期风功率预测 变分模态分解 特征选择 改进麻雀搜索算法 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于特征选择和ICOA-LSSVM的变压器故障诊断 被引量:4
6
作者 向小民 盛刘宇 +1 位作者 刘谦 刘闯 《电气工程学报》 CSCD 北大核心 2024年第4期397-406,共10页
为提高变压器故障诊断的准确率,提出一种基于特征选择和改进黑猩猩算法(Improved chimp optimization algorithm,ICOA)优化最小二乘支持向量机(Least squares support vector machine,LSSVM)的变压器故障诊断方法。采用F-score和信息增... 为提高变压器故障诊断的准确率,提出一种基于特征选择和改进黑猩猩算法(Improved chimp optimization algorithm,ICOA)优化最小二乘支持向量机(Least squares support vector machine,LSSVM)的变压器故障诊断方法。采用F-score和信息增益两种方法对故障特征进行筛选,根据特征选择结果确定变压器故障诊断模型的输入量。采用ICOA算法对LSSVM的惩罚因子和核参数进行优化,建立了基于特征选择和ICOA-LSSVM的变压器故障诊断模型。采用实际变压器故障数据进行算例分析,并与其他变压器故障诊断方法进行对比,结果表明,考虑特征选择的ICOA-LSSVM模型诊断结果的正确率高达95.83%,高于其他方法,验证了所提变压器故障诊断方法的正确性和优越性。 展开更多
关键词 变压器 故障诊断 改进黑猩猩算法 最小二乘支持向量机 特征选择
在线阅读 下载PDF
基于mRMR-IPSO的短期负荷预测双阶段特征选择 被引量:3
7
作者 焦龄霄 周凯 +4 位作者 张子熙 韩飞 时伟君 洪叶 罗朝丰 《重庆大学学报》 CAS CSCD 北大核心 2024年第5期98-109,共12页
电力负荷具有时空多变的特性,受众多因素的影响,在短期负荷预测中较多的输入特征会造成维度灾难,导致模型预测性能不佳,因此选择合理的输入特征集至关重要。文章提出一种新的短期负荷预测特征选择方法——mRMR-IPSO双阶段法。利用最大... 电力负荷具有时空多变的特性,受众多因素的影响,在短期负荷预测中较多的输入特征会造成维度灾难,导致模型预测性能不佳,因此选择合理的输入特征集至关重要。文章提出一种新的短期负荷预测特征选择方法——mRMR-IPSO双阶段法。利用最大相关最小冗余(maxrelevance and min-redundancy,mRMR)判据对原始特征进行排序,考虑输入特征与输出特征之间相关性和输入特征间冗余性,筛选掉一些排序靠后的特征,初选出对预测效果影响显著的特征子集;采用基于改进的粒子群优化算法(improved particle swarm optimization,IPSO)的搜索策略,以LightGBM模型的预测精度为适应度函数,对初选特征子集进行精选,得到最优特征子集。算例结果表明,所提方法能在对原始特征集大幅降维的情况下提升预测精度。 展开更多
关键词 特征选择 负荷预测 最大相关最小冗余 改进的粒子群优化算法 LightGBM
在线阅读 下载PDF
基于改进遗传算法的棉花异性纤维目标特征选择 被引量:13
8
作者 杨文柱 李道亮 +2 位作者 魏新华 康玉国 李付堂 《农业机械学报》 EI CAS CSCD 北大核心 2010年第4期173-178,共6页
为提高基于机器视觉的棉花异性纤维在线分类的精度和速度,提出了一种基于改进遗传算法的特征选择方法。采用分段式染色体管理方案实现对多质特征空间局部化管理;利用分段交叉和变异算子避免出现无效染色体,提高搜索效率;通过自适应调整... 为提高基于机器视觉的棉花异性纤维在线分类的精度和速度,提出了一种基于改进遗传算法的特征选择方法。采用分段式染色体管理方案实现对多质特征空间局部化管理;利用分段交叉和变异算子避免出现无效染色体,提高搜索效率;通过自适应调整交叉和变异概率实现强搜索能力和快收敛速度的动态平衡。实验结果表明,该方法比基本遗传算法搜索能力更强、收敛速度更快,所得最优特征子集较小,更适用于棉花异性纤维在线分类。 展开更多
关键词 棉花 异性纤维 特征选择 改进遗传算法
在线阅读 下载PDF
KNN-IPSO选择特征的网络入侵检测 被引量:8
9
作者 冯莹莹 余世干 刘辉 《计算机工程与应用》 CSCD 2014年第17期95-99,共5页
为了提高网络入侵检测的正确率,提出一种基于KNN-IPSO选择特征的网络入侵检测模型(KNN-IPSO)。首先采用K近邻算法消除原始网络数据中的冗余特征,并将其作为粒子群算法的初始解,然后采用粒子群算法找到最优特征子集,并对粒子的惯性权重... 为了提高网络入侵检测的正确率,提出一种基于KNN-IPSO选择特征的网络入侵检测模型(KNN-IPSO)。首先采用K近邻算法消除原始网络数据中的冗余特征,并将其作为粒子群算法的初始解,然后采用粒子群算法找到最优特征子集,并对粒子的惯性权重进行自适应调整和种群进行混沌操作,帮助种群跳出局部最优,最后采用KDD CUP 99数据集对KNN-IPSO的性能进行测试。结果表明,KNN-IPSO消除了冗余特征,降低了分类器的输入维数,有效提高了入侵检测正确率和检测速度。 展开更多
关键词 入侵检测 特征选择 特征关联性 改进粒子群算法
在线阅读 下载PDF
入侵检测中基于IBQGSA的特征选择及SVM参数优化 被引量:3
10
作者 李丛 闫仁武 +1 位作者 丁勇 王云 《计算机工程与设计》 北大核心 2017年第8期2227-2234,共8页
针对支持向量机(SVM)应用于网络入侵检测时特征选择及分类器参数优化问题,利用改进的二进制量子引力搜索算法(IBQGSA)对入侵特征集及SVM参数进行组合寻优。将入侵特征集及SVM参数看作是二进制量子引力搜索算法中的量子个体并进行组合编... 针对支持向量机(SVM)应用于网络入侵检测时特征选择及分类器参数优化问题,利用改进的二进制量子引力搜索算法(IBQGSA)对入侵特征集及SVM参数进行组合寻优。将入侵特征集及SVM参数看作是二进制量子引力搜索算法中的量子个体并进行组合编码,在使用量子旋转门更新个体位移时,引入动态的位移更新策略,确保算法收敛到全局极值,设计与进化程度及个体适应度值相关的自适应变异概率,提升量子非门变异操作时算法的自适应变异能力。利用KDD CUP 99数据集进行仿真实验,实验结果表明,所提算法能有效地获取最佳特征子集及分类器参数组合,检测效果更好。 展开更多
关键词 二进制量子引力搜索 支持向量机 特征选择 参数优化 入侵检测
在线阅读 下载PDF
基于改进遗传算法的转炉炼钢过程数据特征选择 被引量:18
11
作者 刘辉 曾鹏飞 +1 位作者 巫乔顺 陈甫刚 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第12期185-195,共11页
转炉炼钢生产过程数据特征选择是实现终点碳温预报的关键,针对生产过程高维数据不利于快速精确预测终点碳温的问题,提出一种改进遗传算法的转炉炼钢生产过程数据特征选择方法。首先采用皮尔逊相关系数衡量不同特征的重要贡献度,进而构... 转炉炼钢生产过程数据特征选择是实现终点碳温预报的关键,针对生产过程高维数据不利于快速精确预测终点碳温的问题,提出一种改进遗传算法的转炉炼钢生产过程数据特征选择方法。首先采用皮尔逊相关系数衡量不同特征的重要贡献度,进而构造反映过程数据特征与终点碳温相关性的目标函数;然后通过目标函数定义了种群的最大、最小、平均适应度和随机个体适应度值4个变量,建立了一种自适应调节交叉变异概率机制,使得迭代寻优时种群分布更加合理的同时又提高了算法后期收敛速度,防止陷入局部最优。最后进行实际钢厂生产过程数据特征选择验证和对比实验,结果表明,特征选择平均用时为0.25 s,用于终点预报中温度误差在±5℃的精度为85.67%,碳含量预测误差在±0.01%的精度为80.67%。 展开更多
关键词 转炉炼钢 特征选择 碳温预测 改进遗传算法
在线阅读 下载PDF
基于改进ReliefF算法的哑铃动作识别 被引量:2
12
作者 刘国平 王南星 +2 位作者 周毅 汪文博 唐慜越 《科学技术与工程》 北大核心 2019年第32期219-224,共6页
为了实现哑铃动作分类识别的目标,在哑铃上加装惯性传感器模块,通过采集哑铃锻炼过程中的运动信号,经信号标准化、滤波、基于初始静态量周期分割预处理后,提取侧平举、前平举、反握弯举、锤式弯举、弯举5种哑铃动作的特征向量,使用改进... 为了实现哑铃动作分类识别的目标,在哑铃上加装惯性传感器模块,通过采集哑铃锻炼过程中的运动信号,经信号标准化、滤波、基于初始静态量周期分割预处理后,提取侧平举、前平举、反握弯举、锤式弯举、弯举5种哑铃动作的特征向量,使用改进的Relief F特征选择算法,选择最优特征向量,采用基于平衡决策树的支持向量机对不同的哑铃动作进行分类识别。通过在实验室自主研发的哑铃动作识别系统上进行测试,结果表明:系统能够在单个哑铃动作周期内对哑铃动作进行识别,且识别率可达90%以上,为提供更加个性化的哑铃动作指导奠定基础。 展开更多
关键词 哑铃 动作分类识别 初始静态量周期分割 改进的ReliefF特征选择算法 支持向量机
在线阅读 下载PDF
滚动轴承故障特征选择的Filter与改进灰狼优化混合算法 被引量:6
13
作者 侯钰哲 李舜酩 +3 位作者 龚思琪 黄继刚 张建兵 卢静 《计算机集成制造系统》 EI CSCD 北大核心 2023年第5期1452-1461,共10页
为了从原始高维特征空间中选择最具鉴别能力的特征,提高轴承故障诊断精度,提出了一种Filter与改进灰狼优化混合的故障特征选择算法。首先,针对滚动轴承的原始振动信号,利用一种基于Hilbert-Huang变换的时频域特征提取策略建立高维敏感... 为了从原始高维特征空间中选择最具鉴别能力的特征,提高轴承故障诊断精度,提出了一种Filter与改进灰狼优化混合的故障特征选择算法。首先,针对滚动轴承的原始振动信号,利用一种基于Hilbert-Huang变换的时频域特征提取策略建立高维敏感特征集合。然后,通过由ReliefF算法与拉普拉斯分数构成的混合Filter方法对原始特征集合进行相关性评估并快速筛选重要特征,从而完成特征集合的一次预选。最后,引入改进灰狼优化算法对预选特征集合进行二次筛选,实现冗余特征去除的同时,完成对支持向量机模型参数的优化。利用旋转机械振动试验台获取故障轴承数据进行了验证,试验结果表明,该方法显著提高了分类器模型的诊断准确率,有效实现了故障数据集的特征降维,并且与同类方法相比,所提方法具有更好的综合性能。 展开更多
关键词 特征选择 RELIEFF算法 拉普拉斯分数 改进灰狼优化 故障诊断
在线阅读 下载PDF
基于改进RF特征选择策略的烤烟油分高光谱特征分析 被引量:7
14
作者 叶磊 韦克苏 +2 位作者 李德仑 张富贵 吴雪梅 《中国农机化学报》 北大核心 2021年第8期196-202,共7页
针对烤烟油分特征预测模型的特征优选问题,提出一种改进RF(随机森林)算法特征选择策略,首先通过RF特征选择算法计算出各个特征的RF-Score,将特征按RF-Score的大小排序依次添加到特征子集中,若分类器分类准确率提高则保留该特征,若分类... 针对烤烟油分特征预测模型的特征优选问题,提出一种改进RF(随机森林)算法特征选择策略,首先通过RF特征选择算法计算出各个特征的RF-Score,将特征按RF-Score的大小排序依次添加到特征子集中,若分类器分类准确率提高则保留该特征,若分类器分类准确率没有提高或降低则去除该特征。结果表明:利用RF特征选择算法对烤烟高光谱特征进行筛选时,将176个高光谱特征中按基尼系数降序排列依次输入SVM分类器中,前64个高光谱波段特征即可使支持向量机分类器性能最佳,特征子集维度为64,其分类准确率为93.33%。利用改进RF特征选择策略对176个烤烟高光谱波段特征进行筛选,只需输入371.08 nm、716.71 nm、378.31 nm、487.77 nm、484.09 nm、535.85 nm六个波段的高光谱特征即可使支持向量机分类器性能最佳,其分类准确率为95%,特征子集维度为6,说明改进的RF特征选择策略可以在保证分类器性能的前提下能较好地进行数据降维,减小特征集的冗余。改进后的RF特征选择算法与全高光谱波段相比,特征数量减少170个,分类准确率提高3.33%;与RF特征选择算法相比,特征数量减少58个,分类准确率提高1.67%。 展开更多
关键词 改进RF算法 特征选择 烤烟 油分特征 高光谱
在线阅读 下载PDF
基于粗糙集和改进鲸鱼优化算法的特征选择方法 被引量:22
15
作者 王生武 陈红梅 《计算机科学》 CSCD 北大核心 2020年第2期44-50,共7页
随着互联网和物联网技术的发展,数据的收集变得越发容易。但是,高维数据中包含了很多冗余和不相关的特征,直接使用会徒增模型的计算量,甚至会降低模型的表现性能,故很有必要对高维数据进行降维处理。特征选择可以通过减少特征维度来降... 随着互联网和物联网技术的发展,数据的收集变得越发容易。但是,高维数据中包含了很多冗余和不相关的特征,直接使用会徒增模型的计算量,甚至会降低模型的表现性能,故很有必要对高维数据进行降维处理。特征选择可以通过减少特征维度来降低计算开销和去除冗余特征,以提高机器学习模型的性能,并保留了数据的原始特征,具有良好的可解释性。特征选择已经成为机器学习领域中重要的数据预处理步骤之一。粗糙集理论是一种可用于特征选择的有效方法,它可以通过去除冗余信息来保留原始特征的特性。然而,由于计算所有的特征子集组合的开销较大,传统的基于粗糙集的特征选择方法很难找到全局最优的特征子集。针对上述问题,文中提出了一种基于粗糙集和改进鲸鱼优化算法的特征选择方法。为避免鲸鱼算法陷入局部优化,文中提出了种群优化和扰动策略的改进鲸鱼算法。该算法首先随机初始化一系列特征子集,然后用基于粗糙集属性依赖度的目标函数来评价各子集的优劣,最后使用改进鲸鱼优化算法,通过不断迭代找到可接受的近似最优特征子集。在UCI数据集上的实验结果表明,当以支持向量机为评价所用的分类器时,文中提出的算法能找到具有较少信息损失的特征子集,且具有较高的分类精度。因此,所提算法在特征选择方面具有一定的优势。 展开更多
关键词 特征选择 粗糙集理论 改进鲸鱼优化算法 属性依赖度 最优特征子集
在线阅读 下载PDF
改进蚁群算法及其在高光谱影像分类中的研究 被引量:8
16
作者 王偲晗 万幼川 +1 位作者 王明威 高雄 《计算机工程与应用》 CSCD 北大核心 2018年第1期196-203,共8页
针对高光谱影像波段数目多,易造成维数灾难的问题,结合遗传算法提供的初始启发信息和蚁群算法寻优能力的优势,提出一种基于改进二进制蚁群算法的波段选择方法。该方法通过遗传算法寻优获取几组较优解,经过计算后作为二进制蚁群算法的初... 针对高光谱影像波段数目多,易造成维数灾难的问题,结合遗传算法提供的初始启发信息和蚁群算法寻优能力的优势,提出一种基于改进二进制蚁群算法的波段选择方法。该方法通过遗传算法寻优获取几组较优解,经过计算后作为二进制蚁群算法的初始启发式信息,利用二进制蚁群算法的全局搜索获取最优解;另一方面,为充分利用影像的光谱与空间信息,将波段组合的光谱特征与改进二进制蚁群算法选择的纹理特征融合进行分类,可以获得更高的分类精度。实验结果表明,改进二进制蚁群算法与遗传算法、蚁群算法、二进制蚁群算法相比全局搜索能力更强,且该方法分类精度达到95.63%。 展开更多
关键词 高光谱影像分类 改进二进制蚁群算法 波段选择 光谱特征 纹理特征
在线阅读 下载PDF
一种用于解决特征选择问题的新型混合演化算法 被引量:5
17
作者 李天翼 陈红梅 《郑州大学学报(理学版)》 CAS 北大核心 2021年第2期41-49,共9页
为结合不同演化算法的优势,提出一个混合鲸鱼算法(hybrid whale optimization algorithm,HWOA)。在HWOA算法中鲸鱼优化算法(whale optimization algorithm,WOA)的收缩环绕机制被正余弦算法(sine cosine algorithm,SCA)取代,以实现迭代... 为结合不同演化算法的优势,提出一个混合鲸鱼算法(hybrid whale optimization algorithm,HWOA)。在HWOA算法中鲸鱼优化算法(whale optimization algorithm,WOA)的收缩环绕机制被正余弦算法(sine cosine algorithm,SCA)取代,以实现迭代初期探索和开发之间更好的平衡。此外,在灰狼优化算法(grey wolf optimization,GWO)中引入粒子群算法的个人最佳位置的概念,并引入决策权重参数以更好地反映狼群的等级制度。为提高算法的多样性,在搜索过程中,改进后的灰狼算法和鲸鱼算法的螺旋更新机制随机地被选择。为有效避免算法陷入局部最优,使用非线性的参数调整策略和混沌映射来更新HWOA中的重要参数。实验结果表明,新算法可以有效提高分类的准确率,并选择最合适的特征子集。 展开更多
关键词 特征选择 混合演化算法 鲸鱼优化算法 正余弦算法 改进灰狼优化算法
在线阅读 下载PDF
基于时序特征选择与改进MSPCA算法的电网暂态稳定态势智能评估 被引量:21
18
作者 鲁广明 张璐路 +3 位作者 马晶 魏亚威 李宏强 杨慧彪 《电测与仪表》 北大核心 2023年第6期125-133,共9页
在充分利用电网海量历史运行数据及大量仿真分析数据评估暂态稳定态势过程中,恰当的选择与稳定特征以及提取非正常态势关键影响特征是实现电网暂态稳定态势评估的基础。文中提出了一种基于时序特征选择的暂态稳定态势智能评估方法。给... 在充分利用电网海量历史运行数据及大量仿真分析数据评估暂态稳定态势过程中,恰当的选择与稳定特征以及提取非正常态势关键影响特征是实现电网暂态稳定态势评估的基础。文中提出了一种基于时序特征选择的暂态稳定态势智能评估方法。给出了基于未来运行点的邻域样本在线生成方法及稳定态势等级描述,选择输电断面作为主要特征;基于时序邻域信息度量算法,依据累积贡献率对特征降序排列,并采用基于邻域互信息的计算并伴随基于SVM的特征子集搜索实现冗余特征的剔除,形成稳定特征子集;在应用电网稳定特征子集进行态势评估场景中,采用改进的多尺度主元分析法对稳定相关信息进行提取,通过特征贡献率排序实现非正常态势关键影响特征识别。结合IEEE 39节点算例系统,仿真结果验证了文中所提方法的有效性。 展开更多
关键词 电网暂态稳定态势评估 时序特征选择 邻域互信息 特征贡献率 改进MSPCA算法
在线阅读 下载PDF
基于IMIE、MCFS和SSA-ELM的离心泵故障诊断方法 被引量:4
19
作者 辜文娟 张扬 《机电工程》 CAS 北大核心 2023年第9期1456-1463,共8页
采用多尺度排列熵对离心泵振动信号进行分析时,存在忽略信号幅值信息以及粗粒化处理存在不足的问题,从而导致离心泵的故障识别准确率不高,为此,提出了一种基于改进多尺度增长熵(IMIE)、多聚类特征选择(MCFS)和麻雀搜索算法优化极限学习... 采用多尺度排列熵对离心泵振动信号进行分析时,存在忽略信号幅值信息以及粗粒化处理存在不足的问题,从而导致离心泵的故障识别准确率不高,为此,提出了一种基于改进多尺度增长熵(IMIE)、多聚类特征选择(MCFS)和麻雀搜索算法优化极限学习机(SSA-ELM)的离心泵故障诊断方法。首先,基于改进粗粒化处理,提出了改进多尺度增长熵(IMIE)方法,将其用于提取故障特征,构造了反映离心泵损伤属性的特征矩阵;随后,采用多聚类特征选择(MCFS),对原始故障特征进行了重要性排序,获得了对分类识别贡献度更高的故障特征,提高了故障特征的质量;最后,将低维的敏感特征输入至基于麻雀搜索算法(SSA)的极限学习机(ELM)中,进行了离心泵故障分类,完成了离心泵不同故障类型的识别任务;并采用离心泵故障数据集,对基于IMIE、MCFS和SSA-ELM的故障诊断方法的有效性进行了实验验证。研究结果表明:所提故障诊断方法的故障识别准确率达到了100%,多次实验的平均准确率和标准差也优于其他对比的故障诊断方法,即IMIE能够准确地提取信号中的故障信息,进而表征离心泵的健康状态;SSA-ELM能够准确地识别离心泵的故障类型,证明该方法具有一定的有效性和优越性。 展开更多
关键词 叶片式泵 改进粗粒化处理 改进多尺度增长熵 多聚类特征选择 麻雀搜索算法 极限学习机 特征矩阵
在线阅读 下载PDF
改进的ReliefF算法在哈萨克斯拉夫文识别中的应用 被引量:1
20
作者 阿里木.赛买提 哈力木拉提.买买提 +1 位作者 艾尔肯.赛甫丁 吐尔根.依不拉因 《计算机工程与设计》 北大核心 2017年第2期453-459,共7页
针对模式识别领域中的文字识别问题,为达到较高的识别效率,去除低冗余,选择并提取高效特征,提出以印刷体哈萨克斯拉夫字符、符号及数字为研究目标的基于改进的ReliefF特征选择算法,用于哈萨克斯拉夫文字的识别;对传统的ReliefF算法的特... 针对模式识别领域中的文字识别问题,为达到较高的识别效率,去除低冗余,选择并提取高效特征,提出以印刷体哈萨克斯拉夫字符、符号及数字为研究目标的基于改进的ReliefF特征选择算法,用于哈萨克斯拉夫文字的识别;对传统的ReliefF算法的特征权重做进一步改进,提出Re-reliefF算法,对文字识别的特征选择及特征提取部分进行优化。将基于改进的ReliefF特征选择算法用于哈萨克斯拉夫文识别问题,将该算法的识别结果与传统ReliefF特征选择算法进行比较,比较结果表明,该算法在哈萨克斯拉夫文文字识别过程中效果良好,具有运行速度快与运行时间降低等特点。 展开更多
关键词 哈萨克斯拉夫文 RELIEFF算法 特征选择 改进的Re-reliefF算法 文字识别
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部