期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
改进Faster R-CNN的钢材表面缺陷检测
1
作者 冷岳峰 刘正 +1 位作者 徐宝祎 李志轩 《机械科学与技术》 北大核心 2025年第1期75-83,共9页
钢材表面缺陷检测是工业生产中至关重要的一项检测工作,针对钢材表面缺陷检测中漏检以及对于细小缺陷检测精度不佳等问题,提出了一种改进Faster R-CNN算法。在FPN(Feature pyramid networks)与RPN(Region proposal network)之间引入特... 钢材表面缺陷检测是工业生产中至关重要的一项检测工作,针对钢材表面缺陷检测中漏检以及对于细小缺陷检测精度不佳等问题,提出了一种改进Faster R-CNN算法。在FPN(Feature pyramid networks)与RPN(Region proposal network)之间引入特征融合模块与轻量化通道注意力模块,增加模型对精细特征的捕捉能力。改进模型在NEU-DET数据集上的实验结果显示,最终mAP(Mean average precision,记为m_(AP))值为80.2%,比原始模型提高了12.6%,FPS提高了40.9%。该算法能够有效提升钢材表面缺陷的检测精度,为钢材表面缺陷自动检测提供参考。 展开更多
关键词 缺陷检测 特征融合 通道注意力机制 改进faster r-cnn算法
在线阅读 下载PDF
基于改进Faster R-CNN算法的岩石裂隙发展方向跟踪预测研究 被引量:4
2
作者 黄晓红 李铁锋 +1 位作者 刘祥鑫 李伟 《河南理工大学学报(自然科学版)》 CAS 北大核心 2022年第4期134-141,共8页
为了避免部分岩土工程灾害发生,对岩石表面裂隙发展方向进行跟踪预测,提高岩石表面裂隙的检出率,提出一种基于改进Faster R-CNN算法的岩石裂隙发展方向跟踪预测方法。该法针对红外热像图中岩石裂隙形态多变、尺寸差异大并对实时性有一... 为了避免部分岩土工程灾害发生,对岩石表面裂隙发展方向进行跟踪预测,提高岩石表面裂隙的检出率,提出一种基于改进Faster R-CNN算法的岩石裂隙发展方向跟踪预测方法。该法针对红外热像图中岩石裂隙形态多变、尺寸差异大并对实时性有一定要求的特点,以深度残差网络ResNet50为特征提取网络,利用ROIAlign优化建议框与岩石裂隙特征的空间对应关系,建立特征金字塔融合多尺度特征,对Faster R-CNN算法进行改进,并结合平均红外辐射温度-时间曲线对岩石裂隙发展方向跟踪预测,使用花岗岩单轴压缩试验中采集的红外光谱特征进行试验测试。结果表明,该方法能够较好检测红外热像图中的岩石裂隙,在测试集上的mAP达到88.81%,泛化能力较强,同时结合检测框内的平均红外辐射温度-时间曲线可以较好地跟踪预测裂隙发展方向。 展开更多
关键词 岩石裂隙 红外热像图 平均红外辐射温度 目标检测 改进faster r-cnn算法
在线阅读 下载PDF
基于改进Faster R-CNN算法的两轮车视频检测 被引量:5
3
作者 邝先验 李洪伟 杨柳 《现代电子技术》 北大核心 2020年第9期129-134,共6页
针对城市道路交通视频中两轮车检测经常遇到的误检、漏检频繁,小尺度两轮车检测效果不佳等问题,设计了一种基于改进的Faster R-CNN算法的两轮车视频检测模型。模型修改了锚点的参数,并构建了一种多尺度特征融合的区域建议网络(RPN)结构... 针对城市道路交通视频中两轮车检测经常遇到的误检、漏检频繁,小尺度两轮车检测效果不佳等问题,设计了一种基于改进的Faster R-CNN算法的两轮车视频检测模型。模型修改了锚点的参数,并构建了一种多尺度特征融合的区域建议网络(RPN)结构,使得模型对小尺度目标更加敏感。针对两轮车数据集匮乏,采用迁移学习的方法进行学习并获得两轮车检测的最终模型。实验结果表明,改进后的算法可以有效解决交通视频中小尺度两轮车的检测问题,在两轮车数据集上获得了98.94%的精确率。 展开更多
关键词 两轮车视频检测 两轮车检测模型 改进faster r-cnn算法 RPN网络 参数修改 多尺度特征融合
在线阅读 下载PDF
超奈奎斯特水声通信稀疏自适应自迭代均衡算法
4
作者 褚润聪 武岩波 +2 位作者 朱敏 徐锐 寇旭 《哈尔滨工程大学学报》 北大核心 2025年第6期1187-1196,共10页
针对超奈奎斯特水声通信中的符号间干扰问题,本文提出基于数据重用改进比例递归最小二乘的稀疏自适应自迭代均衡算法,在软均衡器自迭代中更新均衡器系数和后验软判决符号,并根据超奈奎斯特信号加速因子调整算法稀疏度,在正交相移键控和... 针对超奈奎斯特水声通信中的符号间干扰问题,本文提出基于数据重用改进比例递归最小二乘的稀疏自适应自迭代均衡算法,在软均衡器自迭代中更新均衡器系数和后验软判决符号,并根据超奈奎斯特信号加速因子调整算法稀疏度,在正交相移键控和八相移键控调制下给出稀疏度因子和加速因子的拟合关系。仿真和试验证明:该算法具有更优的均衡性能和收敛速度,在距离为10 km的浅海水平通信海试中,实现了频谱效率为2.14 bits/(s·Hz)的超奈奎斯特信号无错误译码传输。 展开更多
关键词 水声通信 超奈奎斯特 Farrow滤波器 TURBO均衡 软译码器 软均衡器 自适应算法 改进成比例递归最小二乘 数据重用
在线阅读 下载PDF
改进型Faster R⁃CNN的AGV导航图案目标检测算法 被引量:4
5
作者 张洪涛 田星星 +1 位作者 周意入 秦宇 《现代电子技术》 2022年第13期51-56,共6页
AGV视觉导航定位技术目前大多是在AGV的预设轨道上铺设含目标对象的导航图案,在拍摄到导航图案后先利用目标检测算法检测其目标区域,然后用角点检测算法提取目标区域的参考角点,最后利用参考角点和工业相机的焦距等参数的几何关系计算出... AGV视觉导航定位技术目前大多是在AGV的预设轨道上铺设含目标对象的导航图案,在拍摄到导航图案后先利用目标检测算法检测其目标区域,然后用角点检测算法提取目标区域的参考角点,最后利用参考角点和工业相机的焦距等参数的几何关系计算出AGV的位姿。文中在目标检测算法中经典的Faster R⁃CNN网络模型基础上加以改进,在多层次的feature map上生成候选框且用两个3×3卷积核分别进行卷积运算,从而直接进行分类和回归。仿真测试结果显示:相比Faster R⁃CNN,改进型Faster R⁃CNN检测所设计导航图案的mAP值提高了0.032,FPS值提高了31。因此证明改进型Faster R⁃CNN的精确度和速度均提高了,应用到AGV视觉导航定位技术中可进一步提高该技术的精确度和速度。 展开更多
关键词 目标检测算法 AGV导航图案 改进型faster R⁃CNN 视觉导航 角点提取 AGV位姿计算 候选框生成 卷积运算
在线阅读 下载PDF
Multi-scale traffic vehicle detection based on faster ReCNN with NAS optimization and feature enrichment 被引量:18
6
作者 Ji-qing Luo Hu-sheng Fang +2 位作者 Fa-ming Shao Yue Zhong Xia Hua 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1542-1554,共13页
It well known that vehicle detection is an important component of the field of object detection.However,the environment of vehicle detection is particularly sophisticated in practical processes.It is comparatively dif... It well known that vehicle detection is an important component of the field of object detection.However,the environment of vehicle detection is particularly sophisticated in practical processes.It is comparatively difficult to detect vehicles of various scales in traffic scene images,because the vehicles partially obscured by green belts,roadblocks or other vehicles,as well as influence of some low illumination weather.In this paper,we present a model based on Faster ReCNN with NAS optimization and feature enrichment to realize the effective detection of multi-scale vehicle targets in traffic scenes.First,we proposed a Retinex-based image adaptive correction algorithm(RIAC)to enhance the traffic images in the dataset to reduce the influence of shadow and illumination,and improve the image quality.Second,in order to improve the feature expression of the backbone network,we conducted Neural Architecture Search(NAS)on the backbone network used for feature extraction of Faster ReCNN to generate the optimal cross-layer connection to extract multi-layer features more effectively.Third,we used the object Feature Enrichment that combines the multi-layer feature information and the context information of the last layer after cross-layer connection to enrich the information of vehicle targets,and improve the robustness of the model for challenging targets such as small scale and severe occlusion.In the implementation of the model,K-means clustering algorithm was used to select the suitable anchor size for our dataset to improve the convergence speed of the model.Our model has been trained and tested on the UN-DETRAC dataset,and the obtained results indicate that our method has art-of-state detection performance. 展开更多
关键词 Neural architecture search Feature enrichment faster r-cnn Retinex-based image adaptive correction algorithm K-MEANS UN-DETRAC
在线阅读 下载PDF
顾及小目标特征的视频人流量智能统计方法 被引量:11
7
作者 朱军 张天奕 +4 位作者 谢亚坤 张杰 李闯农 赵犁 李维炼 《西南交通大学学报》 EI CSCD 北大核心 2022年第4期705-712,736,共9页
人流量统计对智能安防等领域具有重要研究价值.针对视频监控系统中人流量统计准确率较低的问题,提出一种顾及小目标特征的视频人流量智能统计方法,重点研究用于小目标检测的Faster R-CNN(Faster regionconvolutional neural network)改... 人流量统计对智能安防等领域具有重要研究价值.针对视频监控系统中人流量统计准确率较低的问题,提出一种顾及小目标特征的视频人流量智能统计方法,重点研究用于小目标检测的Faster R-CNN(Faster regionconvolutional neural network)改进算法、运动目标关联匹配以及双向人流量智能统计等关键技术,根据人头目标的小尺度特点对Faster R-CNN网络结构进行适应性改进,利用图像浅层特征提高网络对于小目标的特征提取能力,通过基于轨迹预测的跟踪算法实现运动目标的实时追踪,同时设计双向人流量智能统计算法,以实现人流量高准确率统计;为证明方法的有效性,在密集程度不同的场景中进行了测试.测试结果表明:改进的目标检测算法相较于原始算法,在Brainwash测试集和Pets2009基准数据集上的平均准确率分别提高了7.31%、10.71%,视频人流量智能统计方法在多种场景下的综合评价指标F值均能达到90.00%以上,相较于SSD-Sort算法和Yolov3-DeepSort算法,其F值提高了1.14%~3.04%. 展开更多
关键词 监控视频 人流量统计 faster r-cnn改进算法 目标检测 目标跟踪
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部